



# Session 10: IP core network and backbone dimensioning and planning

ITU Asia-Pacific Centre of Excellence Training
On

"Traffic engineering and advanced wireless network planning"

17-19 October 2018, Suva, Fiji

**Philip Smith** 





# Objective: To discuss the parameters and methodology for planning IP network infrastructure





# **Acknowledgements**

- This material originated from the Cisco ISP/IXP Workshop Programme developed by Philip Smith & Barry Greene
  - I'd like to acknowledge the input from many network operators in the ongoing development of these slides, especially Mark Tinka of SEACOM for his contributions
- Use of these materials is encouraged as long as the source is fully acknowledged and this notice remains in place
- Bug fixes and improvements are welcomed
  - Please email workshop (at) bgp4all.com

Philip Smith





### **Network Design**

- PoP Topologies and Design
- Backbone Design
- Addressing
- Routing Protocols
- Infrastructure & Routing Security
- Out of Band Management
- Test Network
- Operational Considerations





# Point of Presence Topology & Design



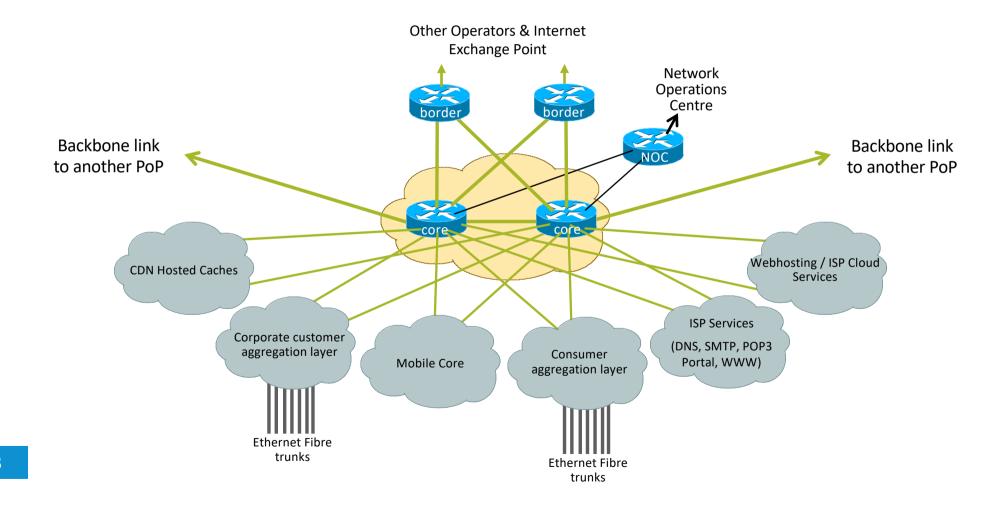


### **PoP Components**

- Core routers
  - High speed trunk connections
- Distribution routers
  - For large networks, aggregating access to core
- Access routers
  - High port density connecting end-users
- Border routers
  - Connections to other providers
- Services routers
  - Hosting and servers
- Some functions might be handled by a single router






# **PoP Design**

- Modular Design is essential
  - Quite often modules map on to business units in a network operator
- Aggregation Services separated according to
  - Connection speed
  - Customer service/expectations
  - Latency
  - Contention ratio
  - Technology
  - Security considerations



#### Modular PoP Design









# **Modular Routing Protocol Design**

- IGP implementation
  - IS-IS is more common in larger operators
    - Entire backbone operates as ISIS Level 2
  - OSPFv2 & OSPFv3 also used
    - Backbone is in Area 0, each PoP in its own non-zero Area
- Modular iBGP implementation
  - BGP route reflector cluster
  - Core routers are the route-reflectors
  - Remaining routers are clients & peer with route-reflectors only





# **Point of Presence Design Details**





#### **PoP Core**

- Two dedicated high performance routers
- Technology
  - High Speed interconnect (10Gbps, 100Gbps, 400Gbps)
  - Backbone Links ONLY; no access services
  - Do not touch them!
- Service Profile
  - 24x7, high availability, duplicate/redundant design





#### **PoP Core – details**

- Router specification
  - High performance control plane CPU
  - Does not need a large number of interface/line cards
    - Only connecting backbone links and links to the various services
- High speed interfaces
  - Aim as high as possible
  - 10Gbps is the typical standard initial installation now
    - Price differential between 1Gbps and 10Gbps justifies the latter when looking at cost per Gbps
  - Many operators using aggregated 10Gbps links, also 100Gbps





#### **Border Network**

- Dedicated border routers to connect to other Network Operators
- Technology
  - High speed connection to core
  - Significant BGP demands, routing policy
  - DDoS front-line mitigation
  - Differentiation in use:
    - Connections to Upstream Providers (Transit links)
    - Connections to Private Peers and Internet Exchange Point
- Service Profile
  - 24x7, high availability, duplicate/redundant design





#### **Border Network – details**

- Router specification
  - High performance control plane CPU
  - Only needs a few interfaces
    - Only connecting to external operators and to the network core routers
  - Typically a 1RU or 2RU device
- High speed interfaces
  - 10Gbps standard to the core
  - 10Gbps to Internet Exchange Point
  - Ethernet towards peers (1Gbps upwards)
  - Ethernet towards transit providers (1Gbps upwards)





#### **Border Network – details**

- Router options:
  - Router dedicated to private peering and IXP connections
    - Only exchange routes originated by respective peers
      - · No default, no full Internet routes
    - Control plane CPU needed for BGP routing table, applying policy, and assisting with DDoS mitigation
  - Router dedicated to transit connectivity
    - Must be separate device from private peering/IXP router
      - · Usually carries full BGP table and/or default route
    - Control plane CPU needed for BGP routing table, applying policy, and assisting with DDoS mitigation
- Note: the ratio of peering traffic to transit traffic volume is around 3:1 today





# **Corporate Customer Aggregation**

- Business customer connections
  - High value, high expectations
- Technology
  - Fibre to the premises (FTTx or GPON)
  - Aggregated within the PoP module
  - Usually managed service; customer premise router provided by the operator
- Service Profile
  - Typically demand peak performance during office hours
  - Out of hours backups to the "Cloud"





# Corporate Customer Aggregation – details

- Router specification
  - Mid-performance control plane CPU
  - High interface densities
- Interface types:
  - 10Gbps uplink to core
  - Multiple 10Gbps trunks
    - Customer connections delivered per VLAN
    - Provided by intermediate ethernet switch or optical equipment







# Corporate Customer Aggregation – details

- Router options:
  - Several smaller devices, aggregating multiple 1Gbps trunks to 10Gbps uplinks
    - Typically 1RU routers with 16 physical interfaces
      - 12 interfaces used for customer connections, 4 interfaces for uplinks
    - May need intermediate Distribution Layer (usually ethernet switch) to aggregate to core routers

Direct Fibre Trunk Links



- One larger device, multiple aggregation interfaces, with multiple 10Gbps or single 100Gbps uplink to core
  - Typical 8RU or larger with >100 physical interfaces





# **Consumer Aggregation**

- Home users and small business customer connections
  - Low value, high expectations
- Technology:
  - Fibre to the premises (FTTx or GPON)
  - Still find Cable, ADSL and 802.11 wireless used
  - Aggregated within the PoP module
  - Unmanaged service; with customer premise router provided by the customer
- Service Profile
  - Typically demand peak performance during evenings





# **Consumer Aggregation – details**

- Router specification
  - Mid-performance control plane CPU
  - High interface densities
- Interface types:
  - 10Gbps uplink to core
  - Multiple 10Gbps trunks
    - Customer connections delivered per VLAN
    - Provided by intermediate ethernet switch or optical equipment

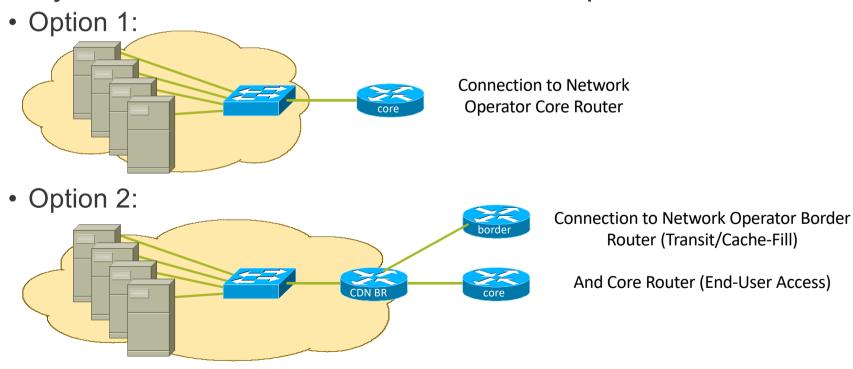
**Direct Fibre Trunk Links** 







#### **CDN Hosted Services and Caches**


- Content provider supplied infrastructure
- Technology:
  - Each CDN provides its own equipment
    - Usually a number of servers & ethernet switch, possibly a router
  - Requires direct and high bandwidth connection to the Core Network
    - Used for cache fill
    - Used to serve end-users
- Service Profile
  - High demand high availability 24x7





#### **CDN Hosted Services and Caches – details**

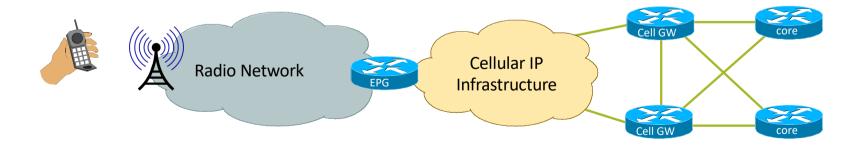
• Every CDN is different, but follow a similar pattern







#### **Mobile Core**


- Connection to Cellular Network infrastructure
- Technology:
  - Dedicated & redundant routers
  - Direct connection to Network Operator Core
- Service Profile
  - High demand high availability 24x7





#### **Mobile Core – details**

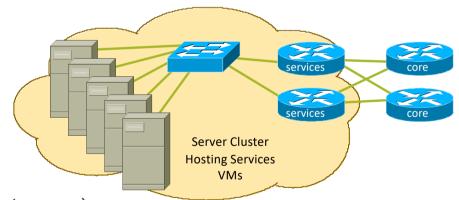
- Cellular network connectivity
  - Cellular infrastructure border routers (Cell GW) need to be:
    - High performance
    - High throughput
    - Able to do packet filtering as required







### **Network Operator Services**


- Infrastructure / Customer services
- Technology:
  - Redundant server cluster behind two routers, hosting virtual machines
  - One virtual machine per service
- Services
  - DNS (2x cache, 2x authoritative)
  - Mail (SMTPS Relay for Customers, POP3S/IMAPS for Customers, SMTP for incoming e-mail)
  - WWW (Operator Website)
  - Portal (Customer Self-Service Portal)





# **Network Operator Services – details**

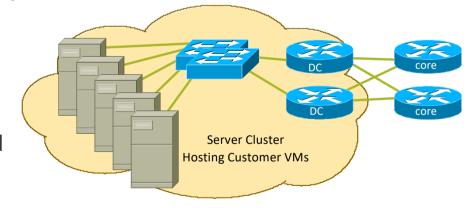
- Infrastructure is usually multiple 1RU or 2RU servers configured into a cluster
  - Hosting Virtual Machines, one VM per Service
  - Examples:
    - WWW
    - Customer Portal
    - Authoritative DNS
    - DNS Cache (Resolver)
    - SMTP Host (incoming email)
    - SMTPS Relay (outgoing email from customers)
    - POP3S/IMAPS (Secure Mail Host for customers),







### Webhosting/Cloud Module


- Hosted Services & DataCentre
  - "Cloud Computing" or: someone else's computer!
- Technology
  - Redundant server cluster behind two routers, hosting virtual machines
  - One virtual machine per service
- Services
  - Content hosting / Websites (one VM per customer)
  - Compute Services (one VM per customer)
  - Backups (one VM per customer)





#### Cloud Module – details

- Infrastructure is usually multiple 1RU or 2RU servers configured into a cluster
  - Hosting Virtual Machines, one VM per Service
  - Several clusters
    - Limit the number of customers per cluster
  - Each customer gets one VM
    - Each VM in a separate private VLAN
    - Avoid exposing one customer VM to any other customer



Commercial and Open Source solutions available





### **Network Operations Centre**

- Management of the network infrastructure
- Technology:
  - Gateway router, providing direct and secure access to the network operator core backbone infrastructure
- Services:
  - Network monitoring
  - Traffic flow monitoring and management
  - Statistics and log gathering
  - RTBH management for DDoS mitigation
  - Out of Band Management Network
    - The Network "Safety Belt"





#### **NOC Module**







# **Summary**

- Network Operator PoP core:
  - Modularity
  - High speed, no maintenance core
  - Direct Ethernet cross-connects
  - Two of everything
  - Rely on performance of IS-IS (or OSPF) and technologies such as BFD (Bi-directional Forwarding Detection) for rapid re-routing in case of device failure





# Network Operator Backbone Infrastructure Design





#### **Priorities**

- Today's Internet is very different from 1990s
  - Back then, online content was via FTP sites, Gopher, bulletin boards, and early single location websites
- Today:
  - Dominance of content
  - Dominance of content distribution infrastructure & networks
- End user focus on social media, cloud services, and on-line videos/photos
  - i.e. Google/YouTube & Facebook accounts for 75% of traffic for an access provider
  - Access provider is merely a path between the CDN and the end-user





#### **Priorities**

- Priority for a service provider:
  - Providing lossless connectivity at high speed & high availability between content provider and end-user
- How:
  - Low latency backbone infrastructure
  - High bandwidth backbone infrastructure
  - Content Cache & Distribution Network Hosting
  - Interconnection with other local operators (private and IXP)
  - Optimised transit to content distribution hubs (for Cache fill)





# Content delivery is competitive!

 Competition in local marketplace is all about speed and quality of content delivery

• e.g.







#### These are NOT Priorities

- Last century's hierarchical transit / incumbent telco model
- Anti-competitive barriers between operators serving the same market
- Legislative barriers preventing interconnection



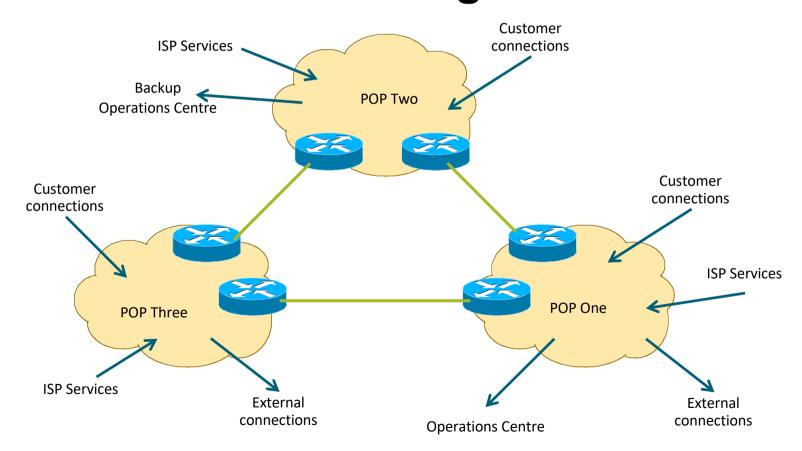


#### **Backbone Design**

- Routed Backbone
  - Some operators use MPLS for VPN service provision
- Point-to-point links using Fibre Optics
  - Ethernet (1GE, 10GE, 40GE, 100GE,...)
  - Packet over SONET (OC48, OC192, OC768)
- All other infrastructure technologies from the 90s and 00s are now obsolete
  - ATM, Frame Relay, PDH, X.25, FDDI,...






#### **Distributed Network Design**

- Important to standardise the PoP design
  - Nothing should be custom built
  - Settle on two or three standard designs (small/medium/large)
  - Using much the same hardware, same layout
  - And deploy across backbone as required
  - Maximises sparing, minimises operational complexity
- Network Operator's essential services distributed around backbone
- NOC and "backup" NOC
- Redundant backbone links





# **Distributed Network Design**







#### **Backbone Links**

- Fibre Optics
  - Most popular with most backbone operators today
  - Dark Fibre
    - Allows the operator to use the fibre pair as they please (implementing either CWDM or DWDM to increase the number of available channels)
    - Leased from fibre owner or purchased outright
  - Leased "lambdas"
    - Operator leases a wavelength from the fibre provider for data transmission
  - On the routers:
    - IP on Ethernet is used more and more for long haul
    - IP on SONET/SDH is more traditional long term





#### Fibre Optics – Brief Summary

- DWDM Dense Wave Division Multiplexing
  - ITU-T G.694.1
  - Allows up to 96 wavelengths per fibre optic pair (transmit and receive)
  - λ: 1528 nm-1563 nm
  - 0.4 nm between channels
  - Costly, due to equipment and transceivers
- CWDM Coarse Wave Division Multiplexing
  - ITU-T G.694.2
  - λ: 1271 nm-1611 nm
  - Allows up to 18 wavelengths per fibre optic pair (transmit and receive)
  - 20 nm between channels
  - Uses G.652.C and G.652.D specification fibre optic cables



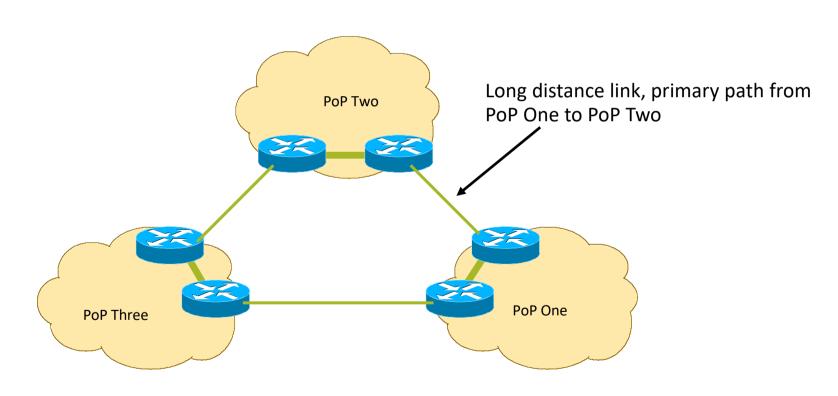


#### Long Distance Backbone Links

- These usually cost more if no access to Dark Fibre
  - Leasing lambdas
  - Leasing SONET/SDH circuit
- Important to plan for the future
  - This means at least two years ahead
  - Stay in budget, stay realistic
  - Unplanned "emergency" upgrades will be disruptive without redundancy in the network infrastructure



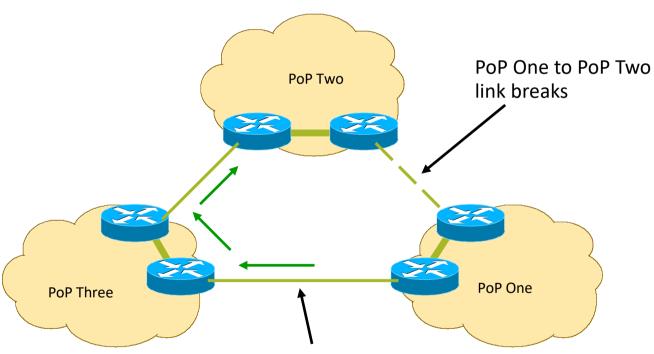



#### Long Distance Backbone Links

- Allow sufficient capacity on alternative paths for failure situations
- What does sufficient mean?
  - For top quality operators, this is usually at least 50% spare capacity
    - Offers "business continuity" for customers in the case of any link failure
    - Allows for unexpected traffic bursts (popular events, releases etc)
  - Lower cost operators offer 25% spare capacity
    - Leads to congestion during link failures, but still usable network
  - Some businesses choose 0%
    - Very short sighted, meaning they have no spare capacity at all!!






## **Long Distance Links**







# **Long Distance Links**

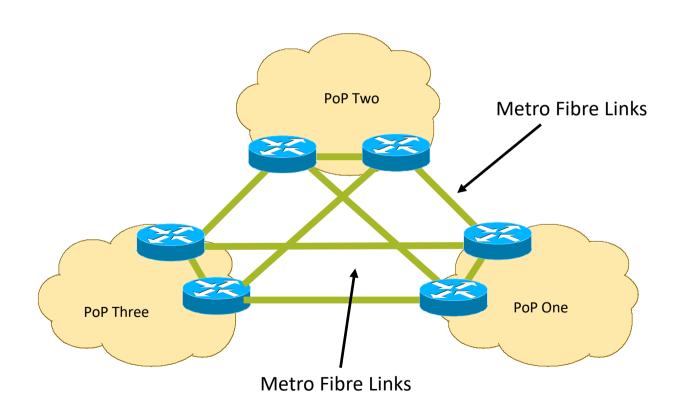


Alternative/Backup Path

Sufficient capacity to carry traffic between PoP One and PoP Two






#### Metropolitan Area Backbone Links

- Tend to be cheaper
  - Circuit concentration
  - Choose from multiple suppliers
  - Existing ducts allow easy installation of new fibre
- Think big
  - More redundancy
  - Less impact of upgrades
  - Less impact of failures





#### **Metro Area Backbone Links**







# **Addressing**





#### **Today**

- New networks are deployed using dual stack
  - The infrastructure supports both IPv6 and the legacy IPv4 addressing
  - The infrastructure runs IPv6 and IPv4 side by side
    - No interaction between IPv4 and IPv6 independent protocols
- IPv4 address space is almost no longer available
  - Many backbones using private IPv4 address space (RFC1918 or RFC6598) and using NAT to translate to public address space
- IPv6 address space is plentiful
  - IPv6 is supported on almost every networking device available today





#### IPv4 & IPv6 dual stack operation

- IPv6 is designed to work independently of IPv4
- If a destination is available only over IPv4, IPv4 will be used
- If a destination is available over IPv4 & IPv6, Happy Eyeballs (RFC8305) ensures that the client uses the transport for the best user experience
- Brief summary of Happy Eyeballs for a dual stack device:
  - Application asks for IPv4 and IPv6 addresses
  - If both types are returned within 50ms of each other, application opens connection using IPv6 addresses first, followed by IPv4 addresses
    - Each attempt comes after at least 100ms delay or delay dependent on observed RTT
  - Application uses the transport which responds with a connection first





#### Where to get IP addresses and AS numbers

- Your upstream provider
- Africa
  - AfriNIC http://www.afrinic.net
- Asia and the Pacific
  - APNIC http://www.apnic.net
- North America
  - ARIN http://www.arin.net
- Latin America and the Caribbean
  - LACNIC http://www.lacnic.net
- Europe and Middle East
  - RIPE NCC http://www.ripe.net/info/ncc





# **Internet Registry Regions**







### **Getting IP address space (1)**

- From your Regional Internet Registry
  - Become a member of your Regional Internet Registry and get your own allocation
    - Membership open to all organisations who are operating a network
  - For IPv6:
    - Minimum allocation is a /32 (or larger if you will have more than 65k /48 assignments)
  - For IPv4:
    - APNIC & RIPE NCC have up to /22 for new members only (to aid with IPv6 deployment)
    - ARIN has nothing
    - AfriNIC and LACNIC have very limited availability check their websites





### **Getting IP address space (2)**

- From your upstream provider
- For IPv4:
  - Very unlikely they will give you more than a single IPv4 address to NAT on to
    - This simply does not scale (NAT limitations)
- For IPv6:
  - Receive a /48 from upstream provider's IPv6 address block
  - Receive more than one /48 if you have more than 65k subnets





### Getting IP address space (3)

- If you need to multihome
- For IPv4:
  - Nothing available from upstream provider
  - Address block from RIR (see earlier)
- For IPv6:
  - Apply for a /48 assignment from your RIR
    - Multihoming with the provider's /48 will be operationally challenging
      - · Provider policies, filters, etc





#### What about RFC1918 addressing?

- RFC1918 defines IPv4 addresses reserved for private Internets
  - Not to be used on Internet backbones
  - http://www.ietf.org/rfc/rfc1918.txt
- Commonly used within end-user networks
  - NAT used to translate from private internal to public external addressing
  - Allows the end-user network to migrate upstreams without a major internal renumbering exercise
- Operators must filter RFC1918 addressing at their network edge
  - http://www.cymru.com/Documents/bogon-list.html





#### What about RFC6598 addressing?

- RFC6598 defines shared IPv4 address space
  - Used for operators using Carrier Grade NAT devices
  - http://www.ietf.org/rfc/rfc65988.txt
- Commonly used within service provider backbones
  - NAT used to translate from shared internal to public external addressing
  - Allows the network operator to deploy an IPv4 infrastructure without the fear of address space used between them and their CPE conflicting with RFC1918 address space used by their customers
- Network Operators must filter RFC6598 addressing at their network edge
  - http://www.cymru.com/Documents/bogon-list.html





#### What about RFC1918 & RFC6598 addressing?

- There is a long list of well known problems:
  - http://www.rfc-editor.org/rfc/rfc6752.txt
- Including:
  - False belief it conserves address space
  - Adverse effects on Traceroute
  - Effects on Path MTU Discovery
  - Unexpected interactions with some NAT implementations
  - Interactions with edge anti-spoofing techniques
  - Peering using loopbacks
  - Adverse DNS Interaction
  - Serious Operational and Troubleshooting issues
  - Security Issues
    - False sense of security, defeating existing security techniques





#### Private versus Globally Routable IPv4 Addressing

- Infrastructure Security: not improved by using private addressing
  - Still can be attacked from inside, or from customers, or by reflection techniques from the outside
- Troubleshooting: made an order of magnitude harder
  - No Internet view from routers
  - Other Network Operators cannot distinguish between down and broken
- Summary:
  - ALWAYS use globally routable IP addressing for Operator Infrastructure





## Why not NAT? (1)

- How to scale NAT performance for large networks?
  - Limiting tcp/udp ports per user harms user experience
- CGN deployment usually requires redesign of SP network
  - Deploy in core, or access edge, or border,...?
- Breaks the end-to-end model of IP
- Breaks end-to-end network security
- Breaks non-NAT friendly applications
  - Or NAT has to be upgraded (if possible)





## Why not NAT? (2)

Limited ports for NAT:

• Typical user device 400 sessions

• TCP/UDP ports per IPv4 address 130k

• Implies 130000/400 users 320 users

• One IPv4 /22 has: 1024 addresses

One IPv4 /22 could support: 320k users

Sizing a NAT device has to be considered quite seriously





## Why not NAT? (3)

- Makes fast rerouting and multihoming more difficult
  - Moving IPv4 address pools between CGNs for external traffic engineering
- Address sharing has reputation, reliability and security issues for end-users
- Layered NAT devices (double or even triple NAT)
- Mandates that the network keeps the state of the connections
- Makes the NAT device a target for miscreants due to possible impact on large numbers of users
- Makes content hosting impossible





## Why not NAT? (4)

- How to support LTE & LTE-A networks?!
  - Number of users? Public IPv4 addresses for CGN?
  - Maintaining LTE performance? Throughput of CGN?
  - LTE user experience typically 50Mbps
  - LTE-A user experience typically 150Mbps
- How to support 5G networks?!
  - 5G promises 1Gbps to the handset with 2ms latency
  - Maintaining LTE performance? Throughput of CGN?





#### **IPv6 Addressing Plans – Infrastructure**

- All Network Operators should obtain an IPv6 /32 from their RIR
- Address block for router loop-back interfaces
  - Number all loopbacks out of one /64
  - /128 per loopback
- Address block for infrastructure (backbone)
  - /48 allows 65k subnets
  - /48 per region (for the largest multi-national networks)
  - /48 for whole backbone (for the majority of networks)
  - Infrastructure/backbone usually does NOT require regional/geographical addressing
  - Summarise between sites if it makes sense
- Follow a similar strategy for IPv4 address planning





#### **IPv6 Addressing Plans – Infrastructure**

- What about LANs?
  - /64 per LAN
- What about Point-to-Point links?
  - Protocol design expectation is that /64 is used
  - /127 now recommended/standardised
    - http://www.rfc-editor.org/rfc/rfc6164.txt
    - (reserve /64 for the link, but address it as a /127)
  - Other options:
    - /126s are being used (mimics IPv4 /30)
    - /112s are being used
      - · Leaves final 16 bits free for node IDs
    - Some discussion about /80s, /96s and /120s too
    - Some equipment doesn't support /127s ☺





#### IPv6 Addressing Plans – Infrastructure

#### • NOC:

- Operator NOC is "trusted" network and usually considered part of infrastructure /48
  - Contains management and monitoring systems
  - Hosts the network operations staff
  - take the last /60 (allows enough subnets)

#### Critical Services:

- Network Operator's critical services are part of the "trusted" network and should be considered part of the infrastructure /48
- For example, Anycast DNS, SMTP, POP3/IMAP, etc.
  - Take the second /64
  - (some operators use the first /64 instead)





#### Addressing Plans – Customer

- Customers are assigned address space according to need
  - IPv6: customer gets a single /48
  - IPv4: usually just a single IP address for them to NAT on to
- Customer address blocks should not be reserved or assigned on a per PoP basis
  - iBGP carries customer nets
  - Aggregation not required and usually not desirable





#### IPv6 Addressing Plans – End-Site

- RFC6177/BCP157 describes assignment sizes to end-sites
  - Original (obsolete) IPv6 design specification said that end-sites get one /48
  - Operators now must recognise that end-sites need to get enough IPv6 address space (multiples of /64) to address all subnets for the foreseeable future
- In typical deployments today:
  - /64 if end-site will only ever be a LAN (not recommended!!)
  - /56 for small end-sites (e.g. home/office/small business)
  - /48 for large end-sites
- Observations:
  - RFC7084 specifies Basic Requirements for IPv6 Customer Edge Routers
    - Including ability to be able to request at least a /60 by DHCPv6-PD
  - Don't assume that a mobile end-site needs only a /64 3GPP Release 10 introduces DHCPv6-PD for tethering
  - Some operators are distributing /60s to their smallest customers!!





#### **Addressing Plans (contd)**

- Document infrastructure allocation
  - Eases operation, debugging and management
- Document customer allocation
  - Contained in iBGP
  - Eases operation, debugging and management
  - Submit network object to RIR Database





# **Routing Protocols**





#### **Routing Protocols**

- IGP Interior Gateway Protocol
  - Carries infrastructure addresses, point-to-point links
  - Examples are OSPF, IS-IS,...
- EGP Exterior Gateway Protocol
  - Carries customer prefixes and Internet routes
  - Current EGP is BGP version 4
- No interaction between IGP and EGP





### Why Do We Need an IGP?

- Network Operator backbone scaling
  - Hierarchy
  - Modular infrastructure construction
  - Limiting scope of failure
  - Healing of infrastructure faults using dynamic routing with fast convergence





## Why Do We Need an EGP?

- Scaling to large network
  - Hierarchy
  - Limit scope of failure
- Policy
  - Control reachability to prefixes
  - Merge separate organizations
  - Connect multiple IGPs





#### Interior versus Exterior Routing Protocols

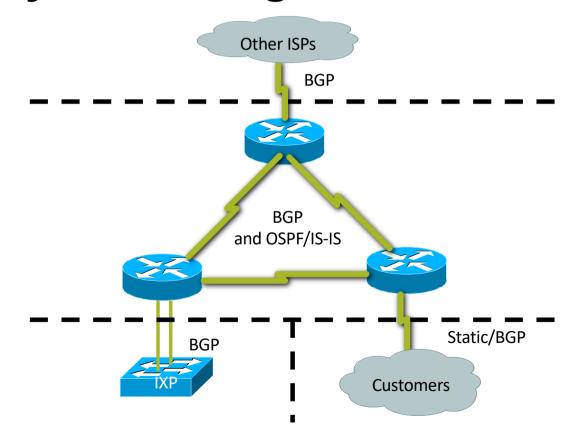
- Interior
  - Automatic neighbour discovery
  - Generally trust your IGP routers
  - Prefixes go to all IGP routers
  - Binds routers in one AS together

- Exterior
  - Specifically configured peers
  - Connecting with outside networks
  - Set administrative boundaries
  - Binds AS's together





#### Interior versus Exterior Routing Protocols


- Interior
  - Carries Operator's infrastructure addresses only
  - Operators aim to keep the IGP small for efficiency and scalability

- Exterior
  - Carries customer prefixes
  - Carries Internet prefixes
  - EGPs are independent of Operator network topology





# **Hierarchy of Routing Protocols**







#### Routing Protocols: Choosing an IGP

- OSPF and IS-IS have very similar properties
  - Review the "IS-IS vs OSPF" presentation
    - http://www.bgp4all.com.au/dokuwiki/\_media/workshops/07-isis-vs-ospf.pdf
  - Which to choose?
  - Choose which is appropriate for your operators' experience
  - In most vendor releases, both OSPF and IS-IS have sufficient "nerd knobs" to tweak/optimise the IGP's behaviour
  - OSPF runs on IP
  - IS-IS runs on infrastructure, alongside IP
  - IS-IS supports both IPv4 and IPv6
  - OSPFv2 (IPv4) plus OSPFv3 (IPv6)





#### Routing Protocols: IGP Recommendations

- Keep the IGP routing table as small as possible
  - If you can count the routers and the point-to-point links in the backbone, that total is the number of IGP entries you should see
- IGP details:
  - Should only have router loopbacks, backbone WAN point-to-point link addresses, and network addresses of any LANs having an IGP running on them
  - Strongly recommended to use inter-router authentication
  - Use inter-area summarisation if possible





#### Routing Protocols: More IGP recommendations

- To fine tune IGP table size more, consider:
  - Using "ip[v6] unnumbered" on customer point-to-point links saves carrying that subnet in IGP
    - (If customer point-to-point address is required for monitoring purposes, then put this in iBGP)
  - Use contiguous addresses for backbone WAN links in each area then summarise into backbone area
  - Don't summarise router loopback addresses as iBGP needs those (for next-hop)
  - Use iBGP for carrying anything which does not contribute to the IGP Routing process





#### Routing Protocols: iBGP Recommendations

- iBGP should carry everything which doesn't contribute to the IGP routing process
  - Internet routing table
  - Customer assigned addresses
  - Customer point-to-point links
  - Access network dynamic address pools, passive LANs, etc





#### Routing Protocols: More iBGP Recommendations

- Scalable iBGP features:
  - Use neighbour authentication
  - Use peer-groups to speed update process and for configuration efficiency
  - Use communities for ease of filtering
  - Use route-reflector hierarchy
    - Route reflector pair per PoP (overlaid clusters)





# **Infrastructure & Routing Security**





## Infrastructure & Routing Security

- Infrastructure security
- Routing security
- Security is not optional!
- Network Operators need to:
  - Protect themselves
  - Help protect their customers from the Internet
  - Protect the Internet from their customers
- The following slides are general recommendations
  - Do more research on security before deploying any network





- Router & Switch Security
  - Use Secure Shell (SSH) for device access & management
    - Do NOT use Telnet or HTTP
  - Device management access filters should only allow NOC and deviceto-device access
    - Do NOT allow external access
  - Use TACACS+ for user authentication and authorisation
    - Do NOT create user accounts on routers/switches





- Remote access JumpHost
  - For Operations Engineers who need access while not in the NOC
  - Create an SSH server host (this is all it does)
    - Or a Secure VPN access server
  - Ops Engineers connect here, and then they can access the NOC and network devices





- Other network devices?
  - These probably do not have sophisticated security techniques like routers or switches do
  - Protect them at the LAN or point-to-point ingress (on router)
- Servers and Services?
  - Protect servers on the LAN interface on the router.
  - Consider using iptables &c on the servers too
- SNMP
  - Apply access-list to the SNMP ports
  - Should only be accessible by management system, not the world





- General Advice:
  - Routers, Switches and other network devices should not be contactable from outside the AS
  - Achieved by blocking typical management access protocols for the infrastructure address block at the network perimeter
    - E.g. ssh, telnet, http, snmp,...
  - Use the ICSI Netalyser to check access levels:
    - http://netalyzr.icsi.berkeley.edu
  - Don't block everything: BGP, traceroute and ICMP still need to work!





## **Routing System Security**

- Implement the recommendations in https://www.manrs.org/
  - Prevent propagation of incorrect routing information
    - Filter BGP peers, in & out!
  - Prevent traffic with spoofed source addresses
    - BCP38 Unicast Reverse Path Forwarding
  - Facilitate communication between network operators
    - NOC to NOC Communication
  - Facilitate validation of routing information
    - Route Origin Authorisation using RPKI





#### **BGP Best Practices**

- Industry standard is described in RFC8212
  - https://tools.ietf.org/html/rfc8212
  - External BGP (EBGP) Route Propagation Behaviour without Policies
- NB: BGP implemented by some vendors is permissive by default
  - This is contrary to industry standard and RFC8212
- Configuring BGP peering without using filters means:
  - All best paths on the local router are passed to the neighbour
  - All routes announced by the neighbour are received by the local router
  - Can have disastrous consequences (see RFC8212)





## **Routing System Security**

- Protect network borders from "traffic which should not be on the public Internet", for example:
  - LAN protocols (eg netbios)
  - Well known exploit ports (used by worms and viruses)
  - Achieved by packet filters on border routers
- Drop mischievous traffic
  - Arriving and going to private and non-routable address space (IPv4 and IPv6)
  - Denial of Service attacks
  - Achieved by unicast reverse path forwarding and remote trigger blackhole filtering
    - RTBH https://tools.ietf.org/html/rfc5635 and https://tools.ietf.org/html/rfc7999
    - uRPF https://tools.ietf.org/html/bcp38





#### Routing System Security – RTBH

- Remote trigger blackhole filtering
  - NOC injects prefixes which should not be accessible across the AS into the iBGP
  - Prefixes have next hop pointing to a blackhole address
  - All iBGP speaking backbone routers configured to point the blackhole address to the null interface
  - Traffic destined to these blackhole prefixes are dropped by the first router they reach
- Application:
  - Any prefixes (including RFC1918 & RFC6598) which should not have routability across the operator's backbone
  - Dealing with DoS attacks on customers and network infrastructure





#### Routing System Security – RTBH

- Remote trigger blackhole filtering example:
  - Origin router:

```
router bgp 64509
redistribute static route-map black-hole-trigger
!
ip route 10.5.1.3 255.255.255.255 Null0 tag 66
!
route-map black-hole-trigger permit 10
match tag 66
set local-preference 1000
set community no-export
set ip next-hop 192.0.2.1
!
```

iBGP speaking backbone router:

```
ip route 192.0.2.1 255.255.255.255 null0
```





#### Routing System Security – RTBH

Resulting routing table entries:

```
gwl#sh ip bgp 10.5.1.3
BGP routing table entry for 10.5.1.3/32, version 64572219
Paths: (1 available, best #1, table Default-IP-Routing-Table)
  Not advertised to any peer
  Local
    192.0.2.1 from 1.1.10.10 (1.1.10.10)
    Origin IGP, metric 0, localpref 1000, valid, internal, best
    Community: no-export
```

```
gwl#sh ip route 10.5.1.3
Routing entry for 10.5.1.3/32
  Known via "bgp 64509", distance 200, metric 0, type internal
  Last update from 192.0.2.1 00:04:52 ago
  Routing Descriptor Blocks:
  * 192.0.2.1, from 1.1.10.10, 00:04:52 ago
  Route metric is 0, traffic share count is 1
  AS Hops 0
```



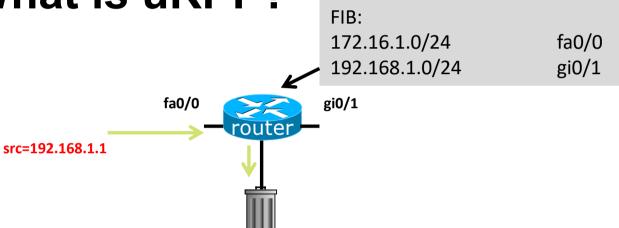


#### Routing System Security – uRPF

- Unicast Reverse Path Forwarding
- Strongly recommended to be used on all customer facing static interfaces
  - BCP 38 (https://tools.ietf.org/html/bcp38)
  - Blocks all unroutable source addresses the customer may be using
  - Inexpensive way of filtering customer's connection (when compared with packet filters)
- Can be used for multihomed connections too, but extreme care required








- Router compares source address of incoming packet with FIB entry
  - If FIB entry interface matches incoming interface, the packet is forwarded
  - If FIB entry interface does not match incoming interface, the packet is dropped





Aside: What is uRPF?



- Router compares source address of incoming packet with FIB entry
  - If FIB entry interface matches incoming interface, the packet is forwarded
  - If FIB entry interface does not match incoming interface, the packet is dropped





#### What is RPKI?

- Resource Public Key Infrastructure (RPKI)
  - RFC 6480 An Infrastructure to Support Secure Internet Routing (Feb 2012)
  - https://tools.ietf.org/html/rfc6480
- A robust security framework for verifying the association between resource holder and their Internet resources
- Created to address the issues in RFC 4593 "Generic Threats to Routing Protocols"
- Helps to secure Internet routing by validating routes
  - Proof that prefix announcements are coming from the legitimate holder of the resource





#### Benefits of RPKI – Routing

- Prevents route hijacking
  - A prefix originated by an AS without authorisation
  - Reason: malicious intent
- Prevents mis-origination
  - A prefix that is mistakenly originated by an AS which does not own it
  - Also route leakage
  - Reason: configuration mistake / fat finger





# **Route Origin Authorisation (ROA)**

- A digital object that contains a list of address prefixes and one AS number
- It is an authority created by a prefix holder to authorise an AS Number to originate one or more specific route advertisements
- Publish a ROA using your RIR member portal





#### **Router Origin Validation**

- Router must support RPKI
- Checks an RP cache / validator
- Validation returns 3 states:
  - Valid = when authorization is found for prefix X
  - Invalid = when authorization is found for prefix X but not from ASN Y
  - Unknown = when no authorization data is found





## **Using RPKI**

- Network operators can make decisions based on RPKI state:
  - Invalid discard the prefix
    - · Several operators are doing this now
  - Not found let it through (maybe low local preference)
  - Valid let it through (high local preference)
- Some operators even considering making "not found" a discard event
  - But then Internet IPv4 BGP table would shrink to about 20k prefixes and the IPv6 BGP table would shrink to about 3k prefixes!





## **RPKI Summary**

- All AS operators must consider deploying
- An important step to securing the routing system
  - Origin validation
- Doesn't secure the path, but that's the next hurdle to cross
- With origin validation, the opportunities for malicious or accidental mis-origination disappear





#### **Infrastructure & Routing Security Summary**

- Implement RTBF
  - Inside Operator backbone
  - Make it available to BGP customers too
    - They can send you the prefix you need to block with a special community attached
    - You match on that community, and set the next-hop to the null address
- Implement uRPF
  - For all static customers
- Implement ROAs and use RPKI to validate routing updates
- Use SSH for device management access
- Use TACACS+ for device management authentication



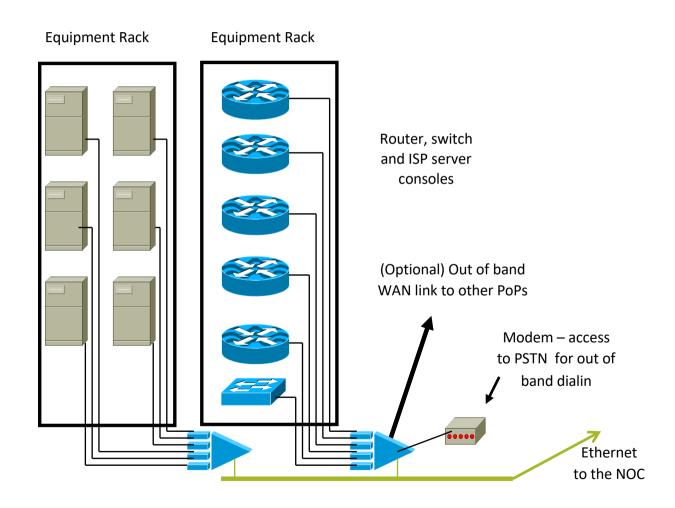






- Not optional!
- Allows access to network equipment in times of failure
- Ensures quality of service to customers
  - Minimises downtime
  - Minimises repair time
  - Eases diagnostics and debugging






- OoB Example Access server:
  - modem attached to allow NOC dial in
  - console ports of all network equipment connected to serial ports
  - LAN and/or WAN link connects to network core, or via separate management link to NOC
- Full remote control access under all circumstances



#### **Out of Band Network**









- OoB Example Statistics gathering:
  - Routers are NetFlow and syslog enabled
  - Management data is congestion/failure sensitive
  - Ensures management data integrity in case of failure
- Full remote information under all circumstances









- Designed to look like a typical PoP
  - Operated like a typical PoP
- Used to trial new services or new software under realistic conditions
- Allows discovery and fixing of potential problems before they are introduced to the network





- Some Operators dedicate equipment to the lab
- Other Operators "purchase ahead" so that today's lab equipment becomes tomorrow's PoP equipment
- Other Operators use lab equipment for "hot spares" in the event of hardware failure





- Can't afford a test lab?
  - Set aside one spare router and server to trial new services
  - Never ever try out new hardware, software or services on the live network
- Most major operators around the world have a test lab of some form
  - It's a serious consideration





# **Operational Considerations**





#### **Operational Considerations**

Why design the world's best network when you have not thought about what operational good practices should be implemented?





## **Operational Considerations: Maintenance**

- Never work on the live network, no matter how trivial the modification may seem
  - Establish maintenance periods which your customers are aware of
    - e.g. Tuesday 4-7am, Thursday 4-7am
- Never do maintenance on the last working day before the weekend
  - Unless you want to work all weekend cleaning up
- Never do maintenance on the first working day after the weekend
  - Unless you want to work all weekend preparing





## **Operational Considerations: Support**

- Differentiate between customer support and the Network Operations Centre
  - Customer support fixes customer problems
  - NOC deals with and fixes backbone and Internet related problems
- Network Engineering team is last resort
  - They design the next generation network, improve the routing design, implement new services, etc
  - They do not and should not be doing support!





#### Operational Considerations Support

- Customer Portals
  - Set up a customer self-help portal
  - For advice on:
    - CPE selection
    - CPE sample configurations
    - Frequently asked questions, frequently provided answers
  - For network status updates:
    - Outages
    - Upgrades
    - Link performance
  - The more information a customer or partner can get, the more confidence they will have in your network infrastructure & operations

Courtesy of SEACOM

LATENCY MATRIX

LOOKING GLASS

BGP COMMUNITIES

SEACOM SPEEDTEST

COVERAGE TOOL

PEERING





#### **Operational Considerations: NOC Communications**

- NOC should know contact details for equivalent NOCs in upstream providers and peers
  - This is not "customer support" this is network operator to network operator
- When connecting to a transit provider:
  - Make sure your NOC staff know how to contact their NOC staff directly
- When setting up a new peer connection (private or IXP):
  - Make sure your NOC staff know how to contact their NOC staff
  - In case of IXP, make sure NOC to NOC contact is well known too





#### **Network Operator Infrastructure Design**

Summary





#### **Design Summary**

- KEEP IT SIMPLE & STUPID! (KISS)
- Simple is elegant is scalable
- Use Redundancy, Security, and Technology to make life easier for yourself
- Above all, ensure quality of service for your customers





# **Thank You**