IPv6 Routing Protocols

ITU/APNIC IPv6 Infrastructure Workshop 21st – 23rd June Phnom Penh

Initial IPv6 Configuration for Cisco IOS

IPv6 Configuration on Cisco IOS

To enable IPv6 the following global commands are required:

Router(config)# ipv6 unicast-routing

Also enable IPv6 CEF (not on by default):

Router(config) # ipv6 cef

Also disable IPv6 Source Routing (enabled by default):

```
Router(config) # no ipv6 source-route
```

IPv6 Configuration

To configure a global or unique-local IPv6 address the following interface command should be entered:

Router(config-if) # ipv6 address X:X..X:X/prefix

To configure an EUI-64 based IPv6 address the following interface command should be entered:

Router(config-if)# ipv6 address X:X::/prefix eui-64

EUI-64 is not helpful on a router and is not recommended

IPv6 Configuration

- If no global IPv6 address is required on an interface, yet it needs to carry IPv6 traffic:
 - Enable IPv6 on that interface using:

```
Router(config-if) # ipv6 enable
```

- Which will result in a link-local IPv6 address being constructed automatically
- FE80:: is concatenated with the Interface ID to give:
 FE80::interface-id
- Configuring an IPv6 address (whether global or unique-local) will also result in a link-local IPv6 address being created

IPv6 Configuration

```
Router1# conf t
Router1(config)# no ipv6 source-route
Router1(config)# ipv6 unicast-routing
Router1(config)# ipv6 cef
Router1(config)# interface FastEthernet 0/0
Router1(config-int)# ipv6 enable
Router1(config-int)# ^Z
```

```
Router1#sh ipv6 interface fast 0/0
FastEthernet0/0 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::A8B9:C0FF:FE00:F11D
No global unicast address is configured
Joined group address(es):
    FF02::1
    FF02::2
    FF02::1:FF00:F11D
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
    6
ICMP redirects are enabled
```

IPv6 Configuration – EUI64

```
Router1#sh ipv6 interface fast 0/0
FastEthernet0/0 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::A8B9:C0FF:FE00:F11D
  Global unicast address(es):
    2001:DB8::A8B9:C0FF:FE00:F11D, subnet is 2001:DB8::/64 [EUI]
  Joined group address(es):
    FF02::1
    FF02::2
    FF02::1:FF00:F11D
 MTU is 1500 bytes
  ICMP error messages limited to one every 100 milliseconds
  ICMP redirects are enabled
 ND DAD is enabled, number of DAD attempts: 1
 ND reachable time is 30000 milliseconds
 ND advertised reachable time is 0 milliseconds
 ND advertised retransmit interval is 0 milliseconds
 ND router advertisements are sent every 200 seconds
 ND router advertisements live for 1800 seconds
                                                                  7
 Hosts use stateless autoconfig for addresses.
```

IPv6 Configuration – Static

```
Router1#sh ipv6 int fast 0/0
FastEthernet0/0 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::A8B9:C0FF:FE00:F11D
  Global unicast address(es):
    2001:DB8::2, subnet is 2001:DB8::/64
  Joined group address(es):
    FF02::1
    FF02::2
    FF02::1:FF08:2
    FF02::1:FF00:F11D
  ICMP error messages limited to one every 100 milliseconds
  ICMP redirects are enabled
 ND DAD is enabled, number of DAD attempts: 1
  ND reachable time is 30000 milliseconds
 ND advertised reachable time is 0 milliseconds
 ND advertised retransmit interval is 0 milliseconds
 ND router advertisements are sent every 200 seconds
 ND router advertisements live for 1800 seconds
                                                                  8
 Hosts use stateless autoconfig for addresses.
```

IPv6 Interface Configuration Duplicate Address Detection

If a point-to-point interface (e.g. POS, HSSI, Serial) is looped:

- Router sees its address by Solicited Node Multicast
- Duplicate Address Detection kicks in:

```
Aug 23 09:18:41.263: %IPV6_ND-6-DUPLICATE_INFO: DAD attempt detected for 2001:DB8:0:3:: on Serial1/1
```

- Interface automatically disabled for IPv6 traffic (IPv4 traffic is unaffected)
- This has impact for backbone links (IPv6 traffic takes alternative path) and external peering links (IPv6 peering down, IPv4 peering okay)
- Workaround?
 - Monitoring!

Routing Protocols

Static Routing

Syntax is:

- ipv6 route ipv6-prefix/prefix-length {ipv6-address | interface-type interface-number} [administrativedistance]
- Static Route

ipv6 route 2001:DB8::/64 2001:DB8:0:ABCD::1 150

 Routes packets for network 2001:db8::/64 to a networking device at 2001:DB8:0:ABCD::1 with an administrative distance of 150

Default Routing Example


```
ipv6 unicast-routing
!
interface Ethernet0
ipv6 address 2001:DB8:0:1::A/64
!
interface Ethernet1
ipv6 address 2001:DB8:0:2::A/64
!
ipv6 route ::/0 2001:DB8:0:1::E
Default Route
to Router2 12
```

Dynamic Routing Protocols in IPv6

Dynamic Routing in IPv6 is unchanged from IPv4:

- IPv6 has 2 types of routing protocols: IGP and EGP
- IPv6 still uses the longest-prefix match routing algorithm

IGP

- RIPng (RFC 2080)
- Cisco EIGRP for IPv6
- OSPFv3 (RFC 5340)
- Integrated IS-ISv6 (RFC 5308)
- EGP
 - MP-BGP4 (RFC 4760 and RFC 2545)

Configuring Routing Protocols

Dynamic routing protocols require router-id

- Router-id is a 32 bit integer
- IOS auto-generates these from loopback interface address if configured, else highest IPv4 address on the router
- Most ISPs will deploy IPv6 dual stack so router-id will be automatically created
- Early adopters choosing to deploy IPv6 in the total absence of any IPv4 addressing need to be aware:
 - Router-id needs to be manually configured:

```
ipv6 router ospf 100
router-id 10.1.1.4
```

RIPng

For the ISP industry, simply don't go here

- ISPs do not use RIP in any form unless there is absolutely no alternative
 - And there usually is
- RIPng was used in the early days of the IPv6 test network
 - Sensible routing protocols such as OSPF and BGP rapidly replaced RIPng when they became available

EIGRP for IPv6

Cisco EIGRP has had IPv6 protocol support added

- Just another protocol module (IP, IPX, AppleTalk) with three new TLVs:
 - IPv6_REQUEST_TYPE (0X0401)
 - IPv6_METRIC_TYPE (0X0402)
 - IPv6_EXTERIOR_TYPE (0X0403)
- Router-ID is still 32-bit, protocol is still 88
- Uses similar CLI to existing IPv4 protocol support
- Easy deployment path for existing IPv4 EIGRP users
- In Cisco IOS Release 12.4 onwards

EIGRP for IPv6

Some differences:

- Hellos are sourced from the link-local address and destined to FF02::A (all EIGRP routers). This means that neighbors do not have to share the same global prefix (with the exception of explicitly specified neighbours where traffic is unicasted).
- Automatic summarisation is disabled by default for IPv6 (unlike IPv4)
- No split-horizon in the case of EIGRP for IPv6 (because IPv6 supports multiple prefixes per interface)

OSPFv3 overview

OSPFv3 is OSPF for IPv6 (RFC 5340)
Based on OSPFv2, with enhancements
Distributes IPv6 prefixes
Runs directly over IPv6
Ships-in-the-night with OSPFv2

Differences from OSPFv2

Runs over a link, not a subnet

- Multiple instances per link
- Topology not IPv6 specific
 - Router ID
 - Link ID
- Standard authentication mechanisms
- Uses link local addresses
- Generalized flooding scope
- Two new LSA types

OSPFv3 configuration example

```
Router1#

interface Ethernet0

ipv6 address 2001:db8:1:1::1/64

ipv6 ospf 1 area 0

!

interface Ethernet1

ipv6 address 2001:db8:2:2::2/64

ipv6 ospf 1 area 1

!

ipv6 router ospf 1

router-id 1.1.1.1
```


ISIS Standards History

- ISO 10589 specifies the OSI IS-IS routing protocol for CLNS traffic
- RFC 1195 added IPv4 support
 - Also known as Integrated IS-IS (I/IS-IS)
 - I/IS-IS runs on top of the Data Link Layer
- RFC5308 adds IPv6 address family support
- RFC5120 defines Multi-Topology concept
 - Permits IPv4 and IPv6 topologies which are not identical
 - Permits roll out of IPv6 without impacting IPv4 operations

Cisco IOS IS-IS dual stack configuration – single topology

LAN2: 2001:db8:2::a/64

Dual stack IPv4/IPv6 single topology configuration.

```
Router1#
interface ethernet 1
ip address 10.1.1.1 255.255.255.0
ipv6 address 2001:db8:1::a/64
ip router isis
ipv6 router isis
!
interface ethernet 2
ip address 10.2.1.1 255.255.255.0
ipv6 address 2001:db8:2::a/64
ip router isis
ipv6 router isis
!
router isis
net 42.0001.0000.0000.072c.00
```

metric-style wide

1

Cisco IOS IS-IS dual stack configuration – multi-topology

LAN2: 2001:db8:2::a/64

Dual stack IPv4/IPv6 multitopology configuration.

```
Router1#

interface ethernet 1

ip address 10.1.1.1 255.255.255.0

ipv6 address 2001:db8:1::a/64

ip router isis

ipv6 router isis

!

interface ethernet 2

ip address 10.2.1.1 255.255.255.0

ipv6 address 2001:db8:2::a/64

ip router isis

ipv6 router isis
```

```
router isis
net 42.0001.0000.0000.072c.00
metric-style wide
!
address-family ipv6
multi-topology
```

1

Multi-Protocol BGP for IPv6 – RFC2545

IPv6 specific extensions

- Scoped addresses: Next-hop contains a global IPv6 address and/or potentially a link-local address
- NEXT_HOP and NLRI are expressed as IPv6 addresses and prefix
- Address Family Information (AFI) = 2 (IPv6)

Sub-AFI = 1 (NLRI is used for unicast)

- Sub-AFI = 2 (NLRI is used for multicast RPF check)
- Sub-AFI = 3 (NLRI is used for both unicast and multicast RPF check)

Sub-AFI = 4 (label)

A Simple MP-BGP Session

Routing Protocols for IPv6 Summary

- Support for IPv6 in the major routing protocols
- More details for OSPF, ISIS and BGP in separate presentations

IPv6 Routing Protocols