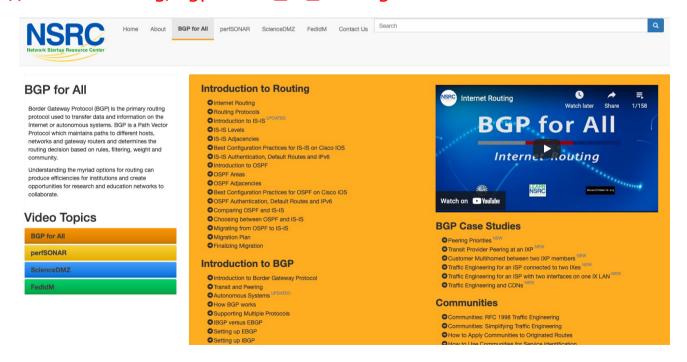
Introduction to OSPF

ISP Workshops


These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

Acknowledgements

- This material originated from the Cisco ISP/IXP Workshop Programme developed by Philip Smith & Barry Greene
- Use of these materials is encouraged as long as the source is fully acknowledged and this notice remains in place
- Bug fixes and improvements are welcomed
 - Please email workshop (at) bgp4all.com

BGP Videos

- NSRC has made a video recording of this presentation, as part of a library of BGP videos for the whole community to use:
 - https://learn.nsrc.org/bgp#intro_to_routing

- Open Shortest Path First
- □ Open:
 - Meaning an Open Standard
 - Developed by IETF (OSPF Working Group) for IP RFC1247
 - Current standard is OSPFv2 (RFC2328)
- Shortest Path First:
 - Edsger Dijkstra's algorithm for producing shortest path tree through a graph
 - □ Dijkstra, E. W. (1959). "A note on two problems in connexion with graphs". *Numerische Mathematik* 1: 269–271
 - http://www-m3.ma.tum.de/foswiki/pub/MN0506/WebHome/dijkstra.pdf

- Known as a Link State Routing Protocol
 - The other link state routing protocol is IS-IS
 - Each node in the network computes the map of connectivity through the network
- The other type of Routing Protocol is Distance Vector
 - Like FIGRP or RIP
 - Each node shares its view of the routing table with other nodes

- Routers with OSPF enabled on them look for neighbouring routers also running OSPF
 - Using the "Hello" protocol
 - The "Hello" packet includes the subnet mask, list of known neighbours, and details such as "hello interval" and "router dead interval"
 - Hello interval how often the router will send Hellos
 - Router dead interval how long to wait before deciding router has disappeared
 - The values of "hello interval", "router dead interval" and subnet mask must match on both neighbours
 - When a neighbouring router responds with matching details, a neighbour relationship is formed

OSPF Neighbour Relationships

- A relationship is formed between selected neighbouring routers for the purpose of exchanging routing information
 - This is called an ADJACENCY
- Not every pair of neighbouring routers become adjacent
 - On multi-access networks (e.g. ethernet), only selected routers form adjacencies

OSPF Adjacencies

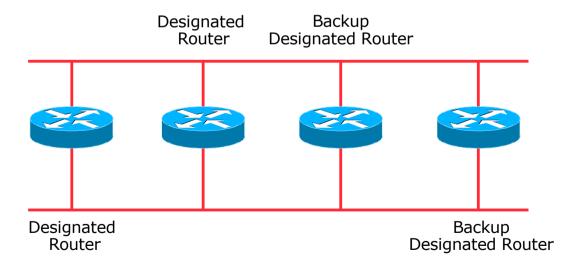
- Once an adjacency is formed, neighbours share their link state information
 - Information goes in a Link State Packet (LSP)
 - LSPs sent to a neighbour are known as Link State Announcements (LSA)
- New information received from neighbours is used to compute a new view of the network
- On a link failure
 - New LSPs are flooded
 - The routers recompute the routing table

OSPF across a network

- All routers across the network form neighbour relationships with their directly attached neighbours
- Each router computes the routing table
- Once each router has the same view of the network, the network has converged
- The IGP design for a network is crucially important to ensure scalability and rapid convergence
- Generally: the fewer the prefixes, the faster the convergence

OSPF Areas

- OSPF has the concept of areas
 - All networks must have an area 0, the "default" area
 - Areas are used to scale OSPF for large networks
 - There are many types of areas, to suit many different types of infrastructure and topologies
 - Most small to medium networks (up to ~300 routers) can happily use a single area

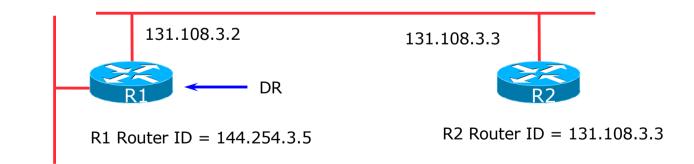

- OSPFv2 is for IPv4
 - For carrying IPv4 prefixes only
- □ OSPFv3 is for IPv6
 - For carrying IPv6 prefixes only
 - Based on OSPFv2 but is specifically for IPv6
 - Documented in RFC5340
 - Is totally independent of OSPFv2
- Configuration concepts and syntax are very similar
 - (There are subtle differences/improvements)

Links in OSPF

- Two types of links in OSPF:
 - Point-to-point link
 - Only one other router on the link, forming a point-to-point adjacency
 - Multi-access network (e.g. ethernet)
 - Potential for many other routers on the network, with several other adjacencies
- OSPF in multi-access networks has optimisations to aid scaling
 - Two routers are elected to originate the LSAs for the whole multi-access network
 - Called "Designated Router" and "Backup Designated Router"
 - Other routers on the multi-access network form adjacencies with the DR and BDR

Designated Router

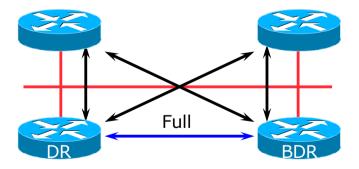
- □ There is ONE designated router per multi-access network
 - Generates network link advertisements
 - Assists in database synchronization
 - Scales OSPF for multi-access (ethernet) networks



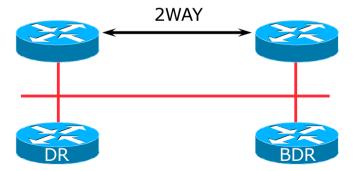
Selecting the Designated Router

- Configured priority (per interface)
 - Configure high priority on the routers to be the DR/BDR
- Else priority determined by highest router ID
 - Router ID is a 32-bit integer

144.254.3.5


 Set manually, otherwise derived from the loopback interface IPv4 address, otherwise the highest IPv4 address on the router

14


Adjacencies on multi-access networks

- □ DR and BDR form FULL adjacencies:
 - With each other
 - With all other routers on the multi-access network
 - Databases are synchronised
 - LSAs propagate along adjacencies

Adjacencies on multi-access networks

- Neighbour relationships between routers which are not DR or BDR are called 2WAY
 - They see each other in HELLO packets but do not exchange topology information
 - The neighbours then are not adjacent

Adjacencies: Examples

■ To find adjacency state, use:

```
show ip[v6] ospf neighbor
```

Point-to-Point link

```
Neighbor ID Pri State Dead Time Address Interface 10.10.15.236 0 FULL/ - 00:00:35 10.10.15.16 Serial1/0
```

■ FULL: other router to DR/BDR

```
        Neighbor ID
        Pri State
        Dead Time
        Address
        Interface

        10.10.15.225
        1 FULL/BDR
        00:00:35
        10.10.15.2
        FastEth0/0

        10.10.15.226
        1 FULL/DR
        00:00:35
        10.10.15.3
        FastEth0/0
```

2WAY: other router to other router

Neighbor ID	Pri	State	Dead Time	Address	Interface
10.10.15.227	1	2WAY/DROTHER	00:00:35	10.10.15.4	FastEth0/0

OSPF on Cisco IOS

Starting OSPFv2 (IPv4) in Cisco's IOS

```
router ospf 42
```

- Where "42" is the process ID
- Starting OSPFv3 (IPv6) in Cisco's IOS

```
ipv6 router ospf 42
```

- Where "42" is the process ID
- OSPF process ID is local to the router
 - Allows the possibility of running multiple instances of OSPF on one router
 - The process ID is not passed between routers
 - The process ID must be a number no option for alphanumeric ID
 - Some ISPs configure the process ID to be the same as their BGP Autonomous System Number

Adding interfaces to OSPF

- □ OSPF interface configuration:
 - When OSPF is configured for a subnet or on an interface, the router will automatically attempt to find neighbours on that subnet or interface

```
router ospf 42 passive-interface default
```

■ ISP Best Practice is to disable this behaviour: And then explicitly enable the interface to allow OSPF to search for neighbours as required:

```
router ospf 42
no passive-interface Gigabit 4/0
```

OSPF on Cisco IOS

- Enabling OSPF on an interface does two things:
 - 1. Enables the Hello protocol for forming neighbour relationships and adjacencies with other routers connected to that interface
 - 2. Announces the interface subnet(s) into OSPF
- Care needed
 - Must avoid enabling the Hello protocol on untrusted networks
 - (e.g. those outside your Autonomous System)

OSPFv2 on Cisco IOS

- Forming neighbour relationships
 - OSPFv2 needs to be activated on the interface the neighbour relationship is desired on:

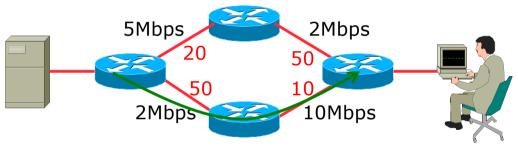
```
interface Gigabit 4/0
  ip address 192.168.1.1 255.255.252
  ip ospf 42 area 0
!
router ospf 42
  passive-interface default
  no passive-interface Gigabit 4/0
!
```

OSPFv3 on Cisco IOS

- Forming neighbour relationships
 - OSPFv3 needs to be activated on the interface the neighbour relationship is desired on:

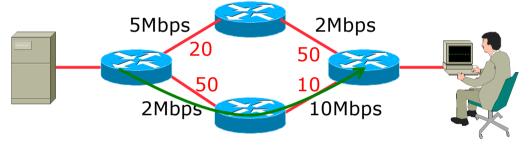
```
interface Gigabit 4/0
  ipv6 address 2001:DB8:10:FE::4/64
  ipv6 ospf 42 area 0
!
ipv6 router ospf 42
  passive-interface default
  no passive-interface Gigabit 4/0
!
```

OSPF interface costs

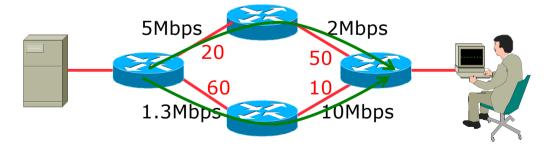

- Cisco IOS sets the interface cost automatically
 - Formula used: cost = 10⁸/interface bandwidth
 - Which is fine for interfaces up to 100Mbps
- Many operators develop their own interface cost strategy

```
ip ospf cost 100
```

- Sets interface cost to 100
- Care needed as the sum of costs determines the best path through the network
- OSPF chooses lowest cost path through a network
- OSPF will load balance over paths with equal cost to the same destination


OSPF Metric Calculation

■ Best path/lowest cost = 60



OSPF Metric Calculation

■ Best path/lowest cost = 60

■ Equal cost paths = 70

OSPF Neighbour Authentication

- Neighbour authentication is highly recommended
 - Prevents unauthorised routers from forming neighbour relationships and potentially compromising the network
- OSPFv2 Authentication is built-in
 - There are two types:
 - Plain text password
 - MD5 hash
- OSPFv3 uses standard IP security header
 - There are two types:
 - MD5 hash
 - □ SHA1

OSPFv2 – Neighbour Authentication

- Configuring authentication for area 0
 - Interfaces still need the authentication key, e.g. POS4/0

```
router ospf 42
  area 0 authentication message-digest
!
interface Gigabit 4/0
  ip ospf message-digest-key <key-no> md5 <passwd>
!
```

Configuring authentication per interface:

```
interface Gigabit 4/0
ip ospf authentication message-digest
ip ospf message-digest-key <key-no> md5 <passwd>
!
```

OSPFv3 – Neighbour Authentication

- Configuring authentication for all interfaces in area 0
 - The key is included in the command turning on authentication for area 0:

```
ipv6 router ospf 42
 area 0 authentication ipsec spi 256 md5 <passwd>
!
```

Configuring authentication per interface:

```
interface Gigabit 4/0
ipv6 ospf authentication ipsec spi 256 md5 <passwd>
!
```

Originating a Default Route

Originating a default route into OSPF:

```
router ospf 42
default-information originate
```

 Which will originate a default route into OSPF only if a default route exists in the RIB

```
router ospf 42 default-information originate always
```

- Which will always originate a default route into OSPF even if no default is in the RIB
- There are equivalent commands for OSPFv3

OSPF on Point-to-Point Ethernet

- OSPF on point-to-point ethernet:
 - DR and BDR election is not needed on a point to point link so it is disabled, which is more efficient

```
interface gigabit 2/0
ip ospf network point-to-point
```

■ There are equivalent commands for OSPFv3

Conclusion

- OSPF is a Link State Routing Protocol
- Quick and simple to get started
 - But has a myriad of options and features to cover almost all types of network topology
 - ISPs keep their OSPF design SIMPLE
 - >400 routers in a single area is entirely feasible

Introduction to OSPF

ISP Workshops