BGP Scaling Techniques

ISP Workshops

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

Last updated 21st May 2024
Acknowledgements

- This material originated from the Cisco ISP/IXP Workshop Programme developed by Philip Smith & Barry Greene

- Use of these materials is encouraged as long as the source is fully acknowledged and this notice remains in place

- Bug fixes and improvements are welcomed
 - Please email workshop (at) bgp4all.com

Philip Smith
BGP Videos

- NSRC has made a video recording of this presentation, as part of a library of BGP videos for the whole community to use:
 - https://learn.nsrc.org/bgp#bgp_scaling_techniques
BGP Scaling Techniques

- Original BGP specification and implementation was fine for the Internet of the early 1990s
 - But didn’t scale
- Issues as the Internet grew included:
 - Scaling the IBGP mesh beyond a few peers?
 - Implement new policy without causing flaps and route churning?
 - Keep the network stable, scalable, as well as simple?
BGP Scaling Techniques

- BGP Configuration Scaling
 - Grouping BGP peers

- Industry Best Practice Scaling Techniques
 - Route Refresh
 - Route Reflectors

- Historical Scaling Techniques
 - Soft Reconfiguration
 - Confederations
 - Route Flap Damping
BGP Configuration Scaling

Cisco’s peer-groups
&
Juniper’s BGP groups
Grouping similar BGP peers

- What are they for?
 - Lets operators group peers with the same outbound policy
 - Makes configuration easier
 - Makes configuration less prone to error
 - Makes configuration more readable
 - Members can have different inbound policy
 - Can be used for EBGP neighbours too!
Grouping similar BGP peers

- Cisco:
 - peer-groups
 - Originally designed to speed IBGP convergence – now for scaling BGP configuration management
 - Internal code optimisation called *update-groups*
 - Speeds IBGP convergence; update only calculated once for neighbours with the same outbound policy

- Juniper:
 - BGP groups
Configuring a Peer Group in IOS

```plaintext
router bgp 64500
  address-family ipv4
    neighbor IBGP peer-group
    neighbor IBGP remote-as 64500
    neighbor IBGP update-source loopback 0
    neighbor IBGP send-community
    neighbor IBGP route-map outfilter out
    neighbor 100.64.0.1 peer-group IBGP
    neighbor 100.64.0.2 peer-group IBGP
    neighbor 100.64.0.2 route-map infilter in
    neighbor 100.64.0.3 peer-group IBGP

! 
```

- Note how 100.64.0.2 has an additional inbound filter over the peer-group
Configuring a Peer Group in IOS

- Can be used for EBGP as well

```
router bgp 64500
  address-family ipv4
  neighbor EBGP peer-group
  neighbor EBGP send-community
  neighbor EBGP route-map set-metric out
  neighbor 100.89.1.2 remote-as 64502
  neighbor 100.89.1.2 peer-group EBGP
  neighbor 100.89.1.4 remote-as 64503
  neighbor 100.89.1.4 peer-group EBGP
  neighbor 100.89.1.6 remote-as 64504
  neighbor 100.89.1.6 peer-group EBGP
  neighbor 100.89.1.6 filter-list infilter in
  !
```
Peer Groups

- Peer-groups are considered obsolete by Cisco:
 - Replaced by update-groups (internal coding – not configurable)

- But are still considered best practice by many network operators

- Cisco introduced peer-templates
 - A much enhanced version of peer-groups, allowing more complex constructs
Cisco’s update-groups (1)

- Update-groups is an internal IOS coding, taking over the performance gains introduce by peer-groups

```
Router1#sh ip bgp 10.0.0.0/26
BGP routing table entry for 10.0.0.0/26, version 2
Paths: (1 available, best #1, table default)
    Advertised to update-groups:
        1
    Refresh Epoch 1
    Local
        0.0.0.0 from 0.0.0.0 (10.0.15.241)
        Origin IGP, metric 0, localpref 100, weight 32768, valid...
```

- The “show” command indicates the prefix is handled by update-group #1
Cisco’s update-groups (2)

- The update group itself lists all the peers which get the same (identical) update:

```
Router1#sh ip bgp update-group 1
BGP version 4 update-group 1, internal, Address Family: IPv4 Unicast
   BGP Update version : 16/0, messages 0
   Topology: global, highest version: 16, tail marker: 16
   Format state: Current working (OK, last not in list)
      Refresh blocked (not in list, last not in list)
   Update messages formatted 11, replicated 13, current 0, refresh 0, limit 1000
   Number of NLRIs in the update sent: max 2, min 0
   Minimum time between advertisement runs is 0 seconds
   Has 13 members:
   10.0.15.242  10.0.15.243  10.0.15.244  10.0.15.245
   10.0.15.246  10.0.15.247  10.0.15.248  10.0.15.249
   10.0.15.250  10.0.15.251  10.0.15.252  10.0.15.253
   10.0.15.254
```

- And this group has 13 members
Peer Groups

- Always configure peer-groups for IBGP
 - Even if there are only a few IBGP peers
 - Easier to scale network in the future
 - Makes configuration easier to read

- Consider using peer-groups for EBGP
 - Especially useful for multiple BGP customers using same AS (RFC2270)
 - Also useful at Exchange Points:
 - Where network operator policy is generally the same to each peer
 - For Route Server where all peers receive the same routing updates
Juniper BGP groups

- JunOS has very similar configuration concept
 - Simply known as bgp groups, for example:

```plaintext
protocols {
  bgp {
    group ibgp {
      type internal;
      local-address 10.0.15.241;
      family inet {
        unicast;
      }
      export export-ibgp;
      peer-as 10;
      neighbor 10.0.15.242 {
        description "Router 2";
      }
      neighbor 10.0.15.243 {
        description "Router 3";
      }
      ...etc...
    }
  }
}
```
Dynamic Reconfiguration

Non-destructive policy changes
Route Refresh: History

- Historically, routers only stored prefixes which were accepted by incoming policy
 - Those rejected by policy were discarded
 - No storage of discard prefixes

- If a change of incoming policy was required:
 - The EBGP session had to be shutdown, and then brought up again
 - Destructive change: EBGP session down means lost connectivity to that peer, and potentially the rest of the Internet (outage of many minutes!)

- Changes in BGP policy usually had to be carried out during published scheduled maintenance timeslots
 - To minimise impact on end-users
First step at solving this problem was by Cisco with the “soft reconfiguration” concept
- Router keeps a record of all prefixes received before any policy applied (known as Adj-RIB-In)
- Needed extra memory (highly problematic in early routers and modern routers with limited memory)
 - Full BGP table with policy change could require double the control plane memory for BGP
- Policy changes applied to the stored received prefixes
- No shutdown and restart of the BGP session needed when implementing policy changes
Cisco’s Soft Reconfiguration

BGP in process

BGP table

received and used

discarded

accepted

BGP in Table (Adj-RIB-In)

peer

normal

soft

received

peer

peer

BGP out process
Route Refresh: Step Two

- Second step at solving this problem was the introduction of “route refresh”
 - A BGP Capability: RFC2918
 - Peering remains active
 - Impacts only those prefixes affected by the policy change
 - No configuration needed
 - Automatically negotiated at peer establishment
 - No extra memory needed (no need for Adj-Rib-In)
 - Tell peer to resend full BGP announcement
 - `clear ip bgp x.x.x.x [soft] in`
 - Resend full BGP announcement to peer
 - `clear ip bgp x.x.x.x [soft] out`
Route Refresh

- Use Route Refresh capability, *not* hard reset
 - Supported on virtually all BGP implementations
 - Find out from “show ip bgp neighbor”
 - Non-disruptive, “Good For the Internet”

- Only hard-reset a BGP peering as a last resort

Consider the impact of a hard-reset of BGP to be equivalent to a router reboot
Route Refresh: Route Origin Validation

- Route Origin Validation means checking if the prefix received has a valid ROA
 - Route Origination Authorisation – digital object indicating the origin AS for the prefix (and subnet size) using RPKI
 - Valid ROA means that the prefix (and subnet) is being originated from the correct origin AS
 - See the “BGP Origin Validation” presentation for more in-depth content
- Routers implementing ROV apply the validation results via the existing policy language & process
 - Valid – allow; Invalid – drop; NotFound – allow (at lower preference?)
- Problem: how is incoming policy applied on routers today?
Route Refresh: Route Origin Validation

- Routers which maintain the Adj-RIB-In:
 - Apply the ROV policy to the stored received BGP table
 - Updates are applied “automatically” to the BGP table and therefore the FIB
 - No impact on any BGP peers (Route Refresh not needed)
Route Refresh: Route Origin Validation

- Routers which do NOT maintain the Adj-RIB-In:
 - Apply the ROV policy by sending a Route Refresh to peers
 - When there are a large number of ROAs (May 2024 sees around 438k IPv4 and 106k IPv6), and frequent changes or updates of ROAs:
 - Routers are sending frequent Route Refresh requests to peers (typically every few minutes)
 - Peers are being “bombarded” by Route Refresh requests: significant resource burden when they send the full or a large portion of the BGP table
 - Severe control plane CPU impact on the peer router (effectively a Denial of Service on the peer router)
 - As more and more ROAs are created and altered globally, this problem becomes significantly more serious!
Route Refresh: Route Origin Validation

- JunOS implements Adj-RIB-In by default
 - ROA updates do not cause a problem when operating ROV

- Cisco does not implement Adj-RIB-In by default:
 - Applies to all of Cisco IOS/IOS-XE/IOS-XR apart from the most recent releases
 - **MUST turn on soft-reconfiguration if running ROV on the router**
 - Soft-reconfiguration is similar concept to Adj-RIB-In
Enabling Cisco’s Soft Reconfiguration

- **When the policy needs to be changed:**
  ```
  clear ip bgp 100.64.1.1 soft in
  ```

- **Note:**
 - When “soft-reconfiguration” is enabled, there is no access to the route-refresh capability CLI
 - ```clear ip bgp 100.64.1.1 in``` also does a soft refresh
Using Cisco’s Soft-Reconfiguration

- Strongly recommended when deploying Route Origin Validation

- Operators will also use soft-reconfiguration when trouble-shooting EBGP peer problems
 - Soft reconfiguration enabled on an EBGP session means that the operator can see which prefixes were sent by a neighbour before any policy is applied
 - This helps saves arguments between operators about whose BGP filters may have configuration errors!
Route Reflectors

Scaling the IBGP mesh
Scaling the IBGP mesh

- Avoid $\frac{1}{2}n(n-1)$ IBGP mesh

$n=1000 \Rightarrow$ nearly half a million IBGP sessions!

- Two solutions
 - Route reflector: simpler to deploy and run
 - BGP Confederation: more complex, has corner case advantages
Route Reflector: Principle
Route Reflector: Principle
Route Reflector: Rules

- Reflector receives path from clients and non-clients
- Selects best path
- If best path is from client, reflect to other clients and non-clients
- If best path is from non-client, reflect to clients only
- Non-meshed clients
- Described in RFC4456
Route Reflector: Topology

- Divide the backbone into multiple clusters
- Provision at least one Route Reflector (RR) and few clients per cluster
- Route reflectors are fully meshed
- Clients in a cluster could be fully meshed
- Single IGP still carries next-hop and any local routes
Route Reflector: Loop Avoidance

- **Originator_ID attribute**
 - Carries the RID of the originator of the route in the local AS (created by the RR)

- **Cluster_list attribute**
 - The local cluster-id is added when the update is sent by the RR
 - Cluster-id is router-id by default (usually the address of loopback interface)
 - **Do NOT use** `bgp cluster-id x.x.x.x` unless the two route reflectors are physically/directly connected
Route Reflector: Redundancy

- Multiple RRs can be configured in the same cluster – not advised!
 - All RRs in the cluster must have the same cluster-id (otherwise it is a different cluster)

- A router may be a client of RRs in different clusters
 - Common today in service provider networks to overlay two clusters – redundancy achieved that way
 - Each client has two RRs = redundancy
Route Reflector: Redundancy

Cluster One
Cluster Two
Route Reflector: Benefits

- Solves IBGP mesh problem
- Packet forwarding is not affected
- Normal BGP speakers co-exist
- Multiple reflectors for redundancy
- Easy migration
- Multiple levels of route reflectors
Route Reflector: Deployment

- Where to place the route reflectors?
 - Always follow the physical topology!
 - This will guarantee that the packet forwarding won’t be affected

- Typical Service Provider network:
 - PoP has two core routers
 - Core routers are RR for the PoP
 - Two overlaid clusters
Route Reflector: Migration

- Typical service provider network:
 - Core routers have fully meshed IBGP
 - Create further hierarchy if core mesh too big
 - Split backbone into regions

- Configure one cluster pair at a time
 - Eliminate redundant IBGP sessions
 - Place maximum one RR per cluster
 - Easy migration, multiple levels
Route Reflector: Migration

- Migrate small parts of the network, one part at a time.
Router Reflector: Cisco IOS Configuration

- Router D configuration:

```bash
router bgp 64500
 address-family ipv4

... 
neighbor 100.64.3.4 remote-as 64500 
neighbor 100.64.3.4 route-reflector-client 
neighbor 100.64.3.5 remote-as 64500 
neighbor 100.64.3.5 route-reflector-client 
neighbor 100.64.3.6 remote-as 64500 
neighbor 100.64.3.6 route-reflector-client 
...
```
BGP Scaling Techniques

- These two standards-based techniques must be designed in from the beginning for all network operator infrastructure
 1. Route Refresh
 2. Route Reflectors
BGP Confederations
Confederations

- Divide the AS into sub-AS
 - EBGP between sub-AS, but some IBGP information is kept
 - Preserve NEXT_HOP across the sub-AS (IGP carries this information)
 - Preserve LOCAL_PREF and MED
- Usually a single IGP
- Described in RFC5065
Confederations

- Visible to outside world as single AS – “Confederation Identifier”
 - Each sub-AS uses a number from the private space (64512-65534)
- IBGP speakers in sub-AS are fully meshed
 - The total number of neighbors is reduced by limiting the full mesh requirement to only the peers in the sub-AS
 - Can also use Route-Reflector within sub-AS
Confederations

- Configuration (Router C):

  ```
  router bgp 65532
  bgp confederation identifier 200
  bgp confederation peers 65530 65531
  neighbor 141.153.12.1 remote-as 65530
  neighbor 141.153.17.2 remote-as 65531
  ```
Confederations: Next Hop

Confederation 100

Sub-AS 65001

Sub-AS 65002

Sub-AS 65003

AS 200

180.10.0.0/16 180.10.11.1
Confederations: Principle

- Local preference and MED influence path selection
- Preserve local preference and MED across sub-AS boundary
- Sub-AS EBGP path administrative distance
Confederations: Loop Avoidance

- Sub-AS traversed are carried as part of AS-path
- AS-sequence and AS path length
- Confederation boundary
- AS-sequence should be skipped during MED comparison
Route Propagation Decisions

- Same as with “normal” BGP:
 - From peer in same sub-AS → only to external peers
 - From external peers → to all neighbors

- “External peers” refers to
 - Peers outside the confederation
 - Peers in a different sub-AS
 - Preserve LOCAL_PREF, MED and NEXT_HOP
Example (cont.):

BGP table version is 78, local router ID is 141.153.17.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.0</td>
<td>141.153.14.3</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>(65531) 1 i</td>
</tr>
<tr>
<td>141.153.0.0</td>
<td>141.153.30.2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>(65530) i</td>
</tr>
<tr>
<td>144.10.0.0</td>
<td>141.153.12.1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>(65530) i</td>
</tr>
<tr>
<td>199.10.10.0</td>
<td>141.153.29.2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>(65530) 1 i</td>
</tr>
</tbody>
</table>
More points about confederations

- Can ease “absorbing” other service providers into your provider
 - e.g., if one provider buys another
 - (can use local-as feature to do a similar thing)
- You can use route-reflectors with confederation sub-AS to reduce the sub-AS IBGP mesh
Confederations: Benefits

- Solves IBGP mesh problem
- Packet forwarding not affected
- Can be used with route reflectors
- Policies could be applied to route traffic between sub-Ases if required
Confederations: Caveats

- Minimal number of sub-AS
- Sub-AS hierarchy
- Minimal inter-connectivity between sub-ASes
- Path diversity
- Difficult migration
 - BGP reconfigured into sub-AS
 - Must be applied across the network
RRs or Confederations?

<table>
<thead>
<tr>
<th></th>
<th>Internet Connectivity</th>
<th>Multi-Level Hierarchy</th>
<th>Policy Control</th>
<th>Scalability</th>
<th>Migration Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confederations</td>
<td>Anywhere in the network</td>
<td>Yes</td>
<td>Yes</td>
<td>Medium</td>
<td>Medium to High</td>
</tr>
<tr>
<td>Route Reflectors</td>
<td>Anywhere in the network</td>
<td>Yes</td>
<td>Yes</td>
<td>Very High</td>
<td>Very Low</td>
</tr>
</tbody>
</table>

New network operators deploy Route Reflectors from Day One
BGP Communities

Scaling BGP Policies
Multihoming and Communities

- The BGP community attribute is a very powerful tool for assisting and scaling BGP Policies and BGP Multihoming
- Most major Network Operators make extensive use of BGP communities:
 - Internal policies (IBGP)
 - Inter-provider relationships (MED replacement)
 - Customer traffic engineering
Communities for IBGP

- Network Operators tag prefixes learned from their BGP and static customers with communities
 - To identify services the customer may have purchased
 - To identify prefixes which are part of the Provider’s PA space
 - To identify PI customer addresses
 - To control prefix distribution in IBGP
 - To control prefix announcements to customers and upstreams
 - (amongst several other reasons)
Example communities for IBGP

<table>
<thead>
<tr>
<th>Community Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X:1000</td>
<td>Aggregates</td>
</tr>
<tr>
<td>X:1001</td>
<td>Subprefixes of AS X aggregates</td>
</tr>
<tr>
<td>X:1005</td>
<td>Static (non-BGP) customer Provider Independent addresses</td>
</tr>
<tr>
<td>X:2000</td>
<td>BGP customers who get Transit</td>
</tr>
<tr>
<td>X:2100</td>
<td>BGP customers announced to Private Peers</td>
</tr>
<tr>
<td>X:2200</td>
<td>BGP customers announced at IXPs</td>
</tr>
<tr>
<td>X:2500</td>
<td>BGP customers announced to other BGP customers</td>
</tr>
<tr>
<td>X:3100</td>
<td>Routes received from Private Peers</td>
</tr>
<tr>
<td>X:3200</td>
<td>Routes received from IXP peers</td>
</tr>
</tbody>
</table>
There are no recommended Network Operator BGP communities apart from
- RFC1998
- The well-known communities
 - www.iana.org/assignments/bgp-well-known-communities

Efforts have been made to document from time to time
- Collection of Network Operator communities at www.onesc.net/communities
- NANOG Tutorial:
 - www.nanog.org/meetings/nanog40/presentations/BGPcommunities.pdf

Network Operator policy is usually published
- On the Operator’s website
- Referenced in the AS Object in the IRR
Communities for EBGP

<table>
<thead>
<tr>
<th>Community Value</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X:80</td>
<td><code>set local-preference 80</code></td>
<td>Backup path</td>
</tr>
<tr>
<td>X:120</td>
<td><code>set local-preference 120</code></td>
<td>Primary path (over-ride BGP path selection default)</td>
</tr>
<tr>
<td>X:1</td>
<td><code>set as-path prepend X</code></td>
<td>Single prepend when announced to X’s upstreams</td>
</tr>
<tr>
<td>X:2</td>
<td><code>set as-path prepend X X</code></td>
<td>Double prepend when announced to X’s upstreams</td>
</tr>
<tr>
<td>X:3</td>
<td><code>set as-path prepend X X X</code></td>
<td>Triple prepend when announced to X’s upstreams</td>
</tr>
<tr>
<td>X:666</td>
<td><code>set ip next-hop 192.0.2.1</code></td>
<td>Blackhole route – very useful for DoS attack mitigation (RFC7999)</td>
</tr>
</tbody>
</table>
Sample Router Configuration (1)

```
router bgp 100
  address-family ipv4
    neighbor 100.66.32.2 remote-as 130
    neighbor 100.66.32.2 route-map customer-policy-in in
    neighbor 100.66.32.2 activate
    neighbor 100.65.8.9 remote-as 200
    neighbor 100.65.8.9 route-map upstream-out out
    neighbor 100.65.8.9 activate

  !
  ip community-list standard prepend-1 permit 100:1
  ip community-list standard prepend-2 permit 100:2
  ip community-list standard prepend-3 permit 100:3
  ip community-list standard lp-80 permit 100:80
  ip community-list standard lp-120 permit 100:120
  ip community-list standard RTBH permit 100:666
  !
  ip route 192.0.2.1 255.255.255.255 null0
```
Sample Router Configuration (2)

```plaintext
route-map customer-policy-in permit 10
  match community lp-80
  set local-preference 80
!
route-map customer-policy-in permit 20
  match community lp-120
  set local-preference 120
!
route-map customer-policy-in permit 30
  match community RTBH
  set ip next-hop 192.0.2.1
!
route-map customer-policy-in permit 40

...etc...
```
Sample Router Configuration (3)

```plaintext
route-map upstream-out permit 10
match community prepend-1
set as-path prepend 100
!
route-map upstream-out permit 20
match community prepend-2
set as-path prepend 100 100
!
route-map upstream-out permit 30
match community prepend-3
set as-path prepend 100 100 100
!
route-map upstream-out permit 40
...etc...
```
BGP Communities

- There are no “standard communities” representing what Network Operators do.
- Best practices today consider that Network Operators should use BGP communities extensively for:
 - Scaling IBGP
 - Multihoming support of traffic engineering
- Look in the Network Operator AS Object in the IRR or on their website for documented community support.
Route Flap Damping

Network Stability for the 1990s

Network Instability for the 21st Century!
Route Flap Damping

- For many years, Route Flap Damping was a strongly recommended practice
- Now it is **strongly discouraged** as it causes far greater network instability than it cures
- But first, the theory...
Route Flap Damping

- Route flap
 - Going up and down of path or change in attribute
 - BGP WITHDRAW followed by UPDATE = 1 flap
 - EBGP neighbour going down/up is NOT a flap
 - Ripples through the entire Internet
 - Wastes CPU

- Damping aims to reduce scope of route flap propagation
Route Flap Damping (continued)

- Requirements
 - Fast convergence for normal route changes
 - History predicts future behaviour
 - Suppress oscillating routes
 - Advertise stable routes

- Implementation described in RFC 2439
Operation

- Add penalty (1000) for each flap
 - Change in attribute gets penalty of 500

- Exponentially decay penalty
 - Half life determines decay rate

- Penalty above suppress-limit
 - Do not advertise route to BGP peers

- Penalty decayed below reuse-limit
 - Re-advertise route to BGP peers
 - Penalty reset to zero when it is half of reuse-limit
Operation
Operation

- Only applied to inbound announcements from EBGP peers
- Alternate paths still usable
- Controlled by:
 - Half-life (default 15 minutes)
 - reuse-limit (default 750)
 - suppress-limit (default 2000)
 - maximum suppress time (default 60 minutes)
Configuration

- **Fixed damping**

  ```
  router bgp 100
  bgp dampening [<half-life> <reuse-value> <suppress-penalty> <max suppress time>]
  ```

- **Selective and variable damping**

  ```
  bgp dampening [route-map <name>]
  route-map <name> permit 10
    match ip address prefix-list FLAP-LIST
  set dampening [<half-life> <reuse-value> <suppress-penalty> <max suppress time>]
  ip prefix-list FLAP-LIST permit 192.0.2.0/24 le 32
  ```
Operation

- Care required when setting parameters
- Penalty must be less than reuse-limit at the maximum suppress time
- Maximum suppress time and half life must allow penalty to be larger than suppress limit
Configuration

Examples – ✗

- bgp dampening 15 500 2500 30
 - reuse-limit of 500 means maximum possible penalty is 2000 – no prefixes suppressed as penalty cannot exceed suppress-limit

Examples – ✓

- bgp dampening 15 750 3000 45
 - reuse-limit of 750 means maximum possible penalty is 6000 – suppress limit is easily reached
Maths!

- Maximum value of penalty is

 $$\text{max-penalty} = \text{reuse-limit} \times 2^{\left(\frac{\text{max-suppress-time}}{\text{half-life}}\right)}$$

- Always make sure that suppress-limit is LESS than max-penalty otherwise there will be no route damping
Route Flap Damping History

- First implementations on the Internet by 1995
- Vendor defaults too severe
 - RIPE Routing Working Group recommendations in ripe-178, ripe-210, and ripe-229
 - http://www.ripe.net/ripe/docs
 - But many network operators simply switched on the vendors’ default values without thinking
Serious Problems:

- “Route Flap Damping Exacerbates Internet Routing Convergence”
 - Zhuoqing Morley Mao, Ramesh Govindan, George Varghese & Randy H. Katz, August 2002
- “What is the sound of one route flapping?”
 - Tim Griffin, June 2002
- Various work on routing convergence by Craig Labovitz and Abha Ahuja a few years ago
- “Happy Packets”
 - Closely related work by Randy Bush et al
Problem 1:

- One path flaps:
 - BGP speakers pick next best path, announce to all peers, flap counter incremented
 - Those peers see change in best path, flap counter incremented
 - After a few hops, peers see multiple changes simply caused by a single flap → prefix is suppressed
Problem 2:

- Different BGP implementations have different transit time for prefixes
 - Some hold onto prefix for some time before advertising
 - Others advertise immediately
- Race to the finish line causes appearance of flapping, caused by a simple announcement or path change → prefix is suppressed
Solution:

- Misconfigured Route Flap Damping will seriously impact access to:
 - Your network \textit{and}
 - The Internet

- More background contained in RIPE Routing Working Group document:
 - www.ripe.net/ripe/docs/ripe-378

- Recommendations now in:
BGP Scaling Techniques

ISP Workshops