# BGP Origin Validation

#### **ISP** Workshops



These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

Last updated 21<sup>st</sup> May 2024

## Acknowledgements

- This material includes valuable contributions by Randy Bush, Mark Tinka, Aftab Siddiqui, Tashi Phuntsho, Warrick Mitchell and others
- Use of these materials is encouraged as long as the source is fully acknowledged and this notice remains in place
- Bug fixes and improvements are welcomed
  - Please email workshop (at) bgp4all.com

Philip Smith

### **BGP** Videos

- NSRC has produced a library of BGP presentations (including this one), recorded on video, for the whole community to use
  - https://learn.nsrc.org/bgp



3

# Agenda

#### Background – Origin Validation and RPKI

- Route Origin Authorisation
- Route Origin Validation
- Validator Caches
- Deploying RPKI
- RPKI Deployment Status
- What's Next?

# Why Origin Validation?

The trust model of BGP

#### Validating BGP Route Announcements

- How do we know that an AS is permitted to originate the prefix it is originating?
- Implicit trust?
- Because the Internet Routing Registry says so?
  - The Internet Routing Registry (IRR) only documents routing policy
  - And has a large amount of outdated/incorrect information
- Is there something else?
  - Yes: Route Origin Authorisation

### BGP – Why Origin Validation?

- Prevent YouTube accident & Far Worse
  - Almost every day there is an incident of prefix hijack somewhere on the Internet
- Prevents most accidental announcements
  - "Fat finger", missing BGP policy configuration, etc
- Does not prevent malicious path attacks
  - Example: alteration of AS-PATH attribute along the announcement chain
  - That requires 'Path Validation', using BGPsec

#### RPKI

RPKI – Resource Public Key Infrastructure

The Certificate Infrastructure for origin and path validation

We need to be able to authoritatively prove who owns an IP prefix and which AS(s) may announce it

- Prefix ownership follows the allocation hierarchy
- $\blacksquare IANA \rightarrow RIRs \rightarrow ISPs \rightarrow etc$

### What is RPKI?

#### Resource Public Key Infrastructure (RPKI)

- A security framework for verifying the association between resource holder and their Internet resources
- Created to address the issues discussed in RFC 4593 "Generic Threats to Routing Protocols" (Oct 2006)
- Helps to secure Internet routing by validating routes
  - Proof that prefix announcements are coming from the legitimate holder of the resource
  - RFC 6480 An Infrastructure to Support Secure Internet Routing (Feb 2012)
  - RFC 7115 Origin Validation Operation Based on the Resource Public Key Infrastructure (RPKI)

# Benefits of RPKI for Routing

#### Prevents route hijacking

- A prefix originated by an AS without authorisation
- Reason: malicious intent

#### Prevents mis-origination

- A prefix that is mistakenly originated by an AS which does not own it
- Also, route leakage
- Reason: configuration mistake / fat finger

# BGP Security (BGPsec)

- Extension to BGP that provides improved security for BGP routing
  - Published as RFC8205
  - Not yet deployed
- Implemented via a new optional non-transitive BGP attribute (BGPsec\_PATH) that contains a digital signature
- BGPsec supplements BGP origin validation
  - Allows routers to generate, propagate, and validate BGP update messages with the BGPsec\_PATH attribute set

## **BGPsec** Components

- Origin Validation
  - Using the RPKI to detect and prevent mis-originations of someone else's prefixes (RFC6483)
  - Implementation started in 2012
- AS-Path Validation
  - BGPsec has not yet begun deployment (cryptographic computation load)
  - soBGP was one early option
    - https://datatracker.ietf.org/doc/draft-white-sobgp-architecture/ (expired)
    - Not standardised or implemented
  - ASPA (Autonomous System Provider Authorisation) is one more step towards full BGPsec deployment
    - https://datatracker.ietf.org/doc/draft-ietf-sidrops-aspa-verification/

## **RPKI** Nomenclature

- Issuing Party
  - The entity operating as certificate authority (CA)
- Trust Anchor
  - The authority from which trust is assumed, rather than derived from intermediates – the root of the tree

#### Relying Party

- The operator system gathering data from the certificate authority to be used for validation
- Route Origin Authorisation
  - A digital object linking an AS number with the IP address space it is authorised to originate

# Issuing Party

- Internet Registries (RIR, NIR, Large LIRs)
- Acts as a Certificate Authority and issues certificates for customers
- Provides a web interface to issue ROAs for customer prefixes
- Publishes the ROA records



# Relying Party (RP)



# **RPKI** Components



Each of the RIRs publishes their "Trust Anchor Locator" (TAL) – the file that contains both the URL of the RPKI repository and the public key

### **RPKI Service Models**

#### Hosted Model:

- The RIR runs the CA on behalf of its members
  - Manage keys, repository, etc
  - Generate certificates for resource certifications

#### Delegated Model:

- Member becomes the CA, delegated from the parent CA (the RIR)
  - Operates the full RPKI system
  - Several entities now operating delegated CAs
- CA Software
  - NLnetLabs Krill: https://www.nlnetlabs.nl/projects/rpki/krill/

# Agenda

- Background Origin Validation and RPKI
- Route Origin Authorisation
- Route Origin Validation
- Validator Caches
- Deploying RPKI
- RPKI Deployment Status
- What's Next?

# Route Origin Authorisation

### Route Origin Authorisation (ROA)

- A digital object that contains a list of address prefixes and one AS number
- It is an authority created by a prefix holder to authorise an AS Number to originate one or more specific route advertisements
- Publish a ROA using your RIR member portal
  - Consult your RIR for how to use their member portal to publish your ROAs

## Route Origin Authorisation

#### ■ A typical ROA would look like this:

| Prefix     | 10.10.0/16 |
|------------|------------|
| Max-Length | /18        |
| Origin-AS  | AS65534    |

#### There can be more than one ROA per address block

- Allows the operator to originate prefixes from more than one AS
- Caters for changes in routing policy or prefix origin

## Creating ROAs

Only create ROAs for the aggregate and the exact subnets expected in the routing table

**Examples:** 

| Prefix        | Max Length | Origin AS | Comments                                                                                   |
|---------------|------------|-----------|--------------------------------------------------------------------------------------------|
| 10.10.0.0/16  | /24        | 65534     | ROA covers /16 through to /24 – any announced subnets to /24 will be Valid if from AS65534 |
| 10.10.0.0/16  | /16        | 65534     | ROA covers only /16 – any announced subnets will be Invalid                                |
| 10.10.4.0/22  | /24        | 65534     | ROA covers this /22 through to /24                                                         |
| 10.10.32.0/22 | /24        | 64512     | Valid ROA covers /22 through to /24 announcements from AS64512                             |

### Creating ROAs – Important Notes

- Always create ROAs for the aggregate and the individual subnets being routed in BGP
- **Example:** 
  - If creating a ROA for 10.10.0/16 and "max prefix" length is set to /16
    - There will only be a valid ROA for 10.10.0.0/16
    - □ If a subnet of 10.10.0.0/16 is originated, it will be state Invalid

### Creating ROAs – BCP185

#### □ RFC9319/BCP185

- https://www.rfc-editor.org/rfc/rfc9319.html
- Avoid using maxLength attribute unless in special cases
- Do NOT create ROAs for subnets of an aggregate unless they are actively routed
  - If ROA exists, but subnet is not routed, it leaves an opportunity for someone else to mis-originate the subnet using the valid origin AS, resulting in a hijack
- Recommendation: Use minimal ROAs wherever possible only for prefixes that are actually being announced

## Creating ROAs – Important Notes

#### Some current examples of problematic ROAs:

328037

2c0f:f0c8::/32

128

- This means that any and every subnet of 2C0F:F0C8::/32 originated by AS328037 is valid
  - An attacker can use AS328037 as their origin AS to originate 2C0F:F0C8:A0:/48 to deny service to that address block
  - Known as a validated hijack!

|  | 3462 | 1.34.0.0/15 | 24 |
|--|------|-------------|----|
|--|------|-------------|----|

- This means that any subnet of 1.34.0.0/15 down to a /24 as originated by AS3462 is valid
  - An attacker can use AS3462 as their origin AS to originate 1.34.10.0/24 to deny service to that address block

### Creating ROAs: "Validated Hijack"



If the 1.34.10.0/24 prefix had had no ROA, route origin validation would have dropped the invalid announcement at the upstream AS

# Creating ROAs: pre-RIR Address Space

- Some entities were assigned address space by InterNIC
  - This is prior to the existence of the RIRs
- How to sign ROAs for these resources?
- Some RIRs will support the signing of legacy address space ROAs
  - If there is documentation proving the holding
  - If there is some service agreement for resources allocated by the RIR
  - Or by some other arrangement
  - Example, APNIC:
    - https://www.apnic.net/wp-content/uploads/2018/02/APNIC-AR-2017.pdf
  - Example, RIPE NCC:
    - https://www.ripe.net/manage-ips-and-asns/resource-management/certification/resource-certification-rpki-for-provider-independent-end-users
  - Example, ARIN:
    - LRSA (Legacy Registration Services Agreement) now permits signing of ROAs for legacy address space

# Agenda

- Background Origin Validation and RPKI
- Route Origin Authorisation
- Route Origin Validation
- Validator Caches
- Deploying RPKI
- RPKI Deployment Status
- What's Next?

# Route Origin Validation

### Route Origin Validation

- Router must support RPKI
- □ Checks an RP cache / validator
  - Uses RtR protocol, described in RFC8210
- Validation returns 3 states:

| State     | Description                                                                                             |
|-----------|---------------------------------------------------------------------------------------------------------|
| Valid     | When authorisation is found for prefix X coming from ASN Y                                              |
| Invalid   | When authorisation is found for prefix X but <b>not</b> from ASN Y, or <b>not</b> allowable subnet size |
| Not Found | When no authorisation data is found for prefix X                                                        |

### Route Origin Validation – AS0

#### RFC6483 also describes "Disavowal of Routing" Origination"

- AS 0 has been reserved for network operators and other entities to identify non-routed networks
- Which means:
  - "A ROA with a subject of AS0 (AS0 ROA) is an attestation by the holder of a prefix that the prefix described in the ROA, and any more specific prefix, should not be used in a routing context"
- Any prefixes with ROA indicating ASO as the origin AS need to be dropped
  - If these prefixes appear with any other origin, their ROAs will be invalid, achieving this goal 31

### Route Origin Validation – AS0

Possible use cases of AS0:

- Internal use of a prefix that should not appear in the global BGP table
- Internet Exchange Point LAN must never appear in the global BGP table
- Private Address space (IPv4) and non-Global Unicast space (IPv6)
- Unassigned address space
  - This is under discussion within the various RIR policy fora
- IPv4 and IPv6 address resources which should not appear in the global BGP table
  - For example, the special use address space described in RFC6890

### Route Origin Validation – AS0

#### ■ APNIC & LACNIC have now published their AS0 TALs

- Operated separately from the regular TAL
  - https://www.apnic.net/community/security/resource-certification/trust-anchor-locator/
  - https://www.lacnic.net/4984/2/lacnic/rpki-rpki-trust-anchor
- Simply add to the TAL folder in the validator cache
- Some examples of AS0 being used today:

| RPKI/RTR prefix table |               |           |
|-----------------------|---------------|-----------|
| Prefix                | Prefix Length | Origin-AS |
| 2.57.180.0            | 22 - 24       | 0         |
| 5.57.80.0             | 22 - 22       | 0         |
| 23.4.85.0             | 24 - 24       | 0         |
| 23.173.176.0          | 24 - 24       | 0         |
| 23.211.114.0          | 23 - 24       | 0         |
| 45.12.44.0            | 22 - 22       | 0         |
| 58.181.75.0           | 24 - 24       | 0         |
| 109.122.244.0         | 22 - 22       | 0         |

### Route Origin Validation – Implementations

- Cisco IOS available from release 15.2
- Cisco IOS/XR available from release 4.3.2
- Juniper JunOS available from release 12.2
- Nokia available from release R12.0R4
- Huawei available from release V800R009C10
- FRR available from release 4.0
- BIRD available from release 1.6
- OpenBGPD available from OpenBSD release 6.4
- Gobge available since 2018
- VyOS available from release 1.2.0-RC11
- Mikrotik ROS available from release v7
- Arista EOS available from release 4.24.0F

# Agenda

- Background Origin Validation and RPKI
- Route Origin Authorisation
- Route Origin Validation
- Validator Caches
- Deploying RPKI
- RPKI Deployment Status
- What's Next?

# Validator Cache

# Choosing, deploying, and operating a Validator Cache

# RPKI Validator Caches (1)

#### NLnet Labs Routinator 3000

- https://www.nlnetlabs.nl/projects/rpki/routinator/
- https://github.com/NLnetLabs/routinator
- Packages available for Debian/Ubuntu, RHEL/CentOS & FreeBSD
- (Can also be built from source)

#### LACNIC/NIC Mexico validator (FORT)

- https://fortproject.net/en/validator
- https://nicmx.github.io/FORT-validator/
- Packages available for Debian/Ubuntu, RHEL/CentOS & FreeBSD
- (Can also be built from source)

# RPKI Validator Caches (2)

#### RPKI-client

- https://www.rpki-client.org/
- https://tracker.debian.org/pkg/rpki-client
- RPKI repository query system (output for OpenBGPD, BIRD, json)
- For OpenBSD, with ports for Debian/Ubuntu, RHEL/CentOS, FreeBSD, macOS

#### StayRTR

- https://github.com/bgp/stayrtr
- https://tracker.debian.org/pkg/stayrtr
- RPKI to Router protocol implementation (input JSON formatted VRP exports)
- (hard fork of Cloudflare GoRTR)
- Works on anything Go runs on (?)

#### Note:

RPKI-client and StayRTR are used together

# RPKI Validator Caches (3)

- RPKI-Prover
  - https://github.com/lolepezy/rpki-prover
- rpstir2
  - https://github.com/bgpsecurity/rpstir2
- No longer maintained out of date, do NOT use:
  - Dragon Research Labs "rcynic"
  - Cloudflare validator (OctoRPKI/GoRTR)
     StayRTR is a fork of GoRTR
  - RIPE NCC validator
    - Version 2 and 3

# Installing a validator

- Three validators are widely used
  - Routinator 3000
  - FORT
  - RPKI-client/StayRTR
- Listed in order of ease of installation
- For installation details on Ubuntu 22.04
  - https://bgp4all.com/pfs/hints/rpki

# Installing a validator – Routinator

#### If using Ubuntu/Debian, then simply use the package manager, as described:

https://github.com/NLnetLabs/routinator#quick-start-with-debian-andphilip@rpki:~\$ sudo apt install <u>routinator</u> ubuntu-packages eading package lists... Done

#### □ In summary:

- Get the NLnetLabs public key
  - Add the repo to the sources lists
  - Install routinator
  - Initialise
  - Run

philip@rpki:~\$ waet -4 -q0- https://packages.nlnetlabs.nl/aptkey.asc | sudo apt-key add philip@rpki:∼\$ Use 'sudo apt autoremove' to remove it. The following NEW packages will be installed: routinator upgraded, 1 newly installed, 0 to remove and 0 not upgraded. eed to aet 1898 kB of archives. philip@rpki:~\$ sudo vi /etc/apt/sources.list.d/routinator-bionic.list philip@rpki:~\$ cat /etc/apt/sources.list.d/routinator-bionic.list deb [arch=amd64] https://packages.nlnetlabs.nl/linux/ubuntu/ bionic main ohilip@rpki:∼\$ Unpacking routinator (0.8.1–1bionic) ... Settina up routinator (0.8.1–1bionic) ... Adding system user `routingtor' (UID 111) philip@rpki:~\$ sudo routinator—init ——accept—arin—rpa Created local repository directory /var/lib/routinator/rpki-cache Installed 5 TALs in /var/lib/routinator/tals philip@rpki:~\$ sudo systemctl enable --now routinator

philip@rpki:∼\$

### Routinator 3000 web interface

- User interface of Routinator accessed by enabling http option in the server configuration
  - Listens on port 8323

#### /etc/routinator/routinator.conf

| REUTINATOR                                    | 0 |
|-----------------------------------------------|---|
|                                               |   |
| Origin ASN 2497 Prefix 58.138.0.0/17 Validate |   |
|                                               |   |
| Results for AS2497 - 58.138.0.0/17 VALID      |   |
| At least one VRP Matches the Route Prefix     |   |
| Matched VRPs                                  |   |
| ASN Prefix Max Length                         |   |
| AS2497 58.138.0.0/17 17                       |   |

Validation run done at 2021-04-16T04:32:28Z UTC (24 minutes ago)

| ARIN                  | (ii) APNIC            |                       | B RIPE                |                       |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Valid ROAs            |
| 26483                 | 14427                 | 1354                  | 23082                 | 7143                  |
| Final VRPs            |
| 29715                 | 69753                 | 1975                  | 123155                | 13379                 |
| Unsafe VRPs           |
| 0                     | 0                     | 0                     | 17                    | 0                     |
| VRPs Filtered Locally |
| 0                     | 0                     | 0                     | 0                     | 0                     |
| Duplicate VRPs        |
| 2433                  | 146                   | 35                    | 2                     | 1302                  |

# Installing a validator – FORT

#### Easiest is to download one of the packages available

- Described at https://nicmx.github.io/FORT-validator/installation.html
- Example for Ubuntu 20.04:

| philip@fort:~\$ wget https://github.com/NICMx/FORT-vali<br>rt_1.5.3-1_amd64.deb                                                                                                                                                            | .dator/releases/download/1.5.3/fo                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2022-01-20 13:00:49 https://github.com/NICMx/FOR                                                                                                                                                                                           | -validator/releases/download/1.5                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                 |
| <pre>.3/fort_15.3-1_amd64.deb<br/>Resolving github.com (github.com)</pre>                                                                                                                                                                  | philip@fort:~\$ sudo apt install ./fort_1.5.3-1_amd64.deb<br>Reading package lists Done<br>Building dependency tree<br>Reading state information Done                                                                                                                              | Selecting previously unselected package libjansson4:amd64.                                                                                                                                                                                                                                                                      |
| HTTP request sent, awaiting response 200 OK<br>Length: 214136 (209K) [application/octet-stream]<br>Saving to: 'fort_1.5.3-1_amd64.deb'<br>fort_1.5.3-1_amd64.d 100%[=======>] 209<br>2022-01-20 13:00:51 (6.93 MB/s) - 'fort_1.5.3-1_amd64 | Note, selecting 'fort' instead of './fort_1.5.3-1_amd64.deb'<br>The following additional packages will be installed:<br>libjansson4<br>The following NEW packages will be installed:<br>9.12K fort libjansson4<br>0 upgraded, 2 newly installed, 0 to remove and 0 not upgrade     | Preparing to unpack/libjansson4.2.12-1build1_amd64.deb<br>Unpacking libjansson4:amd64 (2.12-1build1)<br>Selecting previously unselected package fort.<br>Preparing to unpack/philip/fort_1.5.3-1_amd64.deb<br>Unpacking fort (1.5.3-1)<br>d Setting up libjansson4:amd64 (2.12-1build1)                                         |
| philip@fort:~\$                                                                                                                                                                                                                            | After this operation, 705 kB of additional disk space will b<br>Do you want to continue? [Y/n] y<br>Get:1 /home/philip/fort_1.5.3-1_amd64.deb fort amd64 1.5.3-1<br>Get:2 http://archive.ubuntu.com/ubuntu focal/main amd64 libj<br>[28.9 kB]<br>Fetched 28.9 kB in 1s (30.0 kB/s) | <sup>De</sup> Adding system user `fort' (UID 116)<br>Adding new group `fort' (GID 122)<br>Adding new user `fort' (UID 116) with group `fort'<br><sup>Id</sup> Not creating home directory `/var/lib/fort'.<br>Created symlink /etc/systemd/system/multi-user.target.wants/fort.service → /lib/system<br>_d/system/fort.service. |
| <b>.</b>                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                    | Processing triggers for man-db (2.9.1-1)<br>Processing triggers for libc-bin (2.31-0ubuntu9.2)                                                                                                                                                                                                                                  |

- Note the automatic creation of the systemd entry
- The configuration file is /etc/fort/config.json set the listening port here (323 by default)

philip@fort:~\$

# Running FORT

#### Other notes:

- Need to refresh the TALs before starting
- Need to make sure that /var/lib/fort is owned by the fort user
- Otherwise FORT will crash on startup with these errors because it cannot write there:

| Jan 20 13: | 33:22 fort | fort[5768]: | Stack trace:                                       |
|------------|------------|-------------|----------------------------------------------------|
| Jan 20 13: | 33:22 fort | fort[5768]: | /usr/bin/fort(print_stack_trace+0x37) [0x55e4d7e   |
| Jan 20 13: | 33:22 fort | fort[5768]: | /usr/bin/fort(pr_op_err+0x98) [0x55e4d7e27fc8]     |
| Jan 20 13: | 33:22 fort | fort[5768]: | /usr/bin/fort(handle_flags_config+0x38b) [0x55e4   |
| Jan 20 13: | 33:22 fort | fort[5768]: | /usr/bin/fort(main+0x66) [0x55e4d7e232c6]          |
| Jan 20 13: | 33:22 fort | fort[5768]: | /lib/x86_64-linux-gnu/libc.so.6(libc_start_mai     |
| Jan 20 13: | 33:22 fort | fort[5768]: | /usr/bin/fort(_start+0x2a) [0x55e4d7e233fa]        |
| Jan 20 13: | 33:22 fort | fort[5768]: | (End of stack trace)                               |
| Jan 20 13: | 33:22 fort | systemd[1]: | fort.service: Main process exited, code=exited, st |
| Jan 20 13: | 33:22 fort | systemd[1]: | fort.service: Failed with result 'exit-code'.      |



# Installing rpki-client (1)

- rpki-client is packaged from Ubuntu 22.04 onwards but is an old version
- Best built from scratch to get the latest
  - Easiest is to build from the Git repository:
     https://github.com/rpki-client/rpki-client-portable

```
philip@validator:~$ git clone --depth 1 https://github.com/rpki-client/rpki-client-por
table.git
Cloning into 'rpki-client-portable'...
remote: Enumerating objects: 53, done.
remote: Counting objects: 100% (53/53), done.
remote: Compressing objects: 100% (47/47), done.
remote: Total 53 (delta 4), reused 23 (delta 1), pack-reused 0
Unpacking objects: 100% (53/53), 59.90 KiB | 2.50 MiB/s, done.
```

- Note the instructions to get the environment ready:
  - You will need automake, autoconf, git, libtool, and libexpat-dev to be installed first use the package manager
  - LibreSSL tls is also needed this is part of OpenBSD but the source will compile on Linux
  - Get latest LibreSSL:
    - https://ftp.openbsd.org/pub/OpenBSD/LibreSSL/
  - Unpack and then run:

```
./configure --enable-libtls-only
make
make install
```

• Which will build and install the libtls that rpki-client needs

# Installing rpki-client (2)

#### With the environment ready

- Run "./autogen.sh" inside the rpki-client distribution
- Then run

./configure --with-tal-dir=/etc/rpki \

--with-base-dir=/var/lib/rpki-client \
--with-output-dir=/var/db/rpki-client



And finally build the client by running make

| philip@validator:~/rpki-client-portable\$ ./autogen.sh                         |          |
|--------------------------------------------------------------------------------|----------|
| pulling upstream openbsd source                                                |          |
| Cloning into 'openbsd'                                                         |          |
| remote: Enumerating objects: 35220, done.                                      |          |
| remote: Counting objects: 100% (20472/20472), done.                            |          |
| remote: Compressing objects: 100% (8598/8598), done.                           |          |
| remote: Total 35220 (delta 7473), reused 20107 (delta 7178), pack-reused 14748 |          |
| Receiving objects: 100% (35220/35220), 5.40 MiB   5.21 MiB/s, done.            | - 1 - 1- |
| Resolving deltas: 100% (21573/21573), done.                                    | atch     |
| Already on 'master'                                                            | ch       |
| Your branch is up to date with 'origin/master'.                                | d.pat    |
| Already up to date.                                                            | 1. put   |
| Current branch master is up to date.                                           |          |
| copying tal                                                                    |          |
| copying includes                                                               |          |
| libtoolize: copying file 'm4/ltoptions.m4'                                     |          |
| libtoolize: copying file 'm4/ltsugar.m4'                                       |          |
| libtoolize: copying file 'm4/ltversion.m4'                                     |          |
| libtoolize: copying file 'm4/lt~obsolete.m4'                                   |          |
| configure.ac:22: installing './compile'                                        |          |
| configure.ac:18: installing './config.guess'                                   |          |
| <pre>configure.ac:18: installing './config.sub'</pre>                          |          |
| configure.ac:19: installing './install-sh'                                     |          |
| configure.ac:19: installing './missing'                                        |          |
| compat/Makefile.am: installing './depcomp'                                     |          |
| philip@validator:~/rpki-client-portable\$                                      |          |

# Running rpki-client

Before we install the client we need to add the specific user and group that the client will use:

```
sudo groupadd _rpki-client
sudo useradd -g _rpki-client -s /sbin/nologin -d /nonexistent -c "rpki-client user" _rpki-client
```

And then we can run:

#### sudo make install

- Which will install the client in /usr/local/sbin and the 4 TALs in /etc/rpki, as well as create the cache and output directories needed
- ARIN TAL requires users to read the disclaimer first:
  - https://www.arin.net/resources/manage/rpki/arin.tal
- Now the client can be run (at the command-line, no daemon)

```
philip@validator:~$ sudo /usr/local/sbin/rpki-client
rpki-client: https://rrdp.krill.cloud/notification.xml: connect: Connection refused
rpki-client: Error retrieving ca.rg.net: 404 NOT FOUND
rpki-client: https://rrdp.taaa.eu/rrdp/notification.xml: connect: Connection refused
rpki-client: https://rrdp.taaa.eu/rrdp/notification.xml: connect: Connection refused
```

- Client authors recommend running the client hourly by cron
  - See <a href="https://man.openbsd.org/rpki-client">https://man.openbsd.org/rpki-client</a> for more information about output options

# Installing StayRTR

- StayRTR is packaged from Ubuntu 22.04 onwards but is an old version
- Best built from scratch
  - Easiest is to build from the Git repository:
     https://github.com/bgp/stayrtr
- You will also need a working Go environment
  - The Go site has more information: https://go.dev/doc/install
- And then you can build StayRTR:

cd stayrtr make build-stayrtr

Put resultant binary into /usr/local/bin

| philip@validator:~\$ git clone https://github.com/bgp/stayrtr                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------|
| Cloning into 'stayrtr'                                                                                                         |
| remote: Enumerating objects: 1501, done.                                                                                       |
| remote: Counting objects: 100% (1501/1501), done.                                                                              |
| remote: Compressing objects: 100% (766/766), done.                                                                             |
| remote: Total 1501 (delta 723), reused 1379 (delta 635), pack-reused 0                                                         |
| Receiving objects: 100% (1501/1501), 8.50 MiB   7.16 MiB/s, done.                                                              |
| Resolving deltas: 100% (723/723), done.                                                                                        |
| philip@validator:~/stayrtr\$ go build cmd/stayrtr/stayrtr.go                                                                   |
| go: downloading github.com/prometheus/client_golang v1.11.0                                                                    |
| go: downloading golang.org/x/crypto v0.0.0-20210921155107-089bfa567519                                                         |
| go: downloading github.com/sirupsen/logrus v1.8.1                                                                              |
| go: downloading golang.org/x/sys v0.0.0-20210615035016-665e8c7367d1                                                            |
| go: downloading github.com/prometheus/client_model v0.2.0                                                                      |
| go: downloading github.com/prometheus/common v0.26.0                                                                           |
| go: downloading github.com/golang/protobuf v1.4.3                                                                              |
| go: downloading github.com/beorn7/perks v1.0.1                                                                                 |
| go: downloading github.com/cespare/xxhash/v2 v2.1.1                                                                            |
| go: downloading github.com/prometheus/procfs v0.6.0                                                                            |
| go: downloading github.com/prometheus/proces v0.0.0<br>go: downloading github.com/matttproud/golang_protobuf_extensions v1.0.1 |
| go: downloading google.golang.org/protobuf v1.26.0-rc.1                                                                        |
|                                                                                                                                |
| philip@validator:~/stayrtr\$ make build-stayrtr                                                                                |
| mkdir -p dist/                                                                                                                 |
| go build -trimpath -ldflags '-X main.version=0.1-88-gf43d23e -X main.buildinfos=                                               |
| 01-20T17:22:59+1000)' -o dist/stayrtr-0.1-88-gf43d23e-linux-x86_64 cmd/stayrtr/s                                               |
| .go                                                                                                                            |
|                                                                                                                                |
| philip@validator:~/stayrtr\$ sudo cp -p dist/stayrtr-0.1-88-gf43d23e-linux-x86_64                                              |

philip@validator:~/stayrtr\$ sudo cp -p dist/stayrtr-0.1-88-gf43d23e-linux-x86\_64 /usr/ local/bin/stayrtr\_\_\_\_

## Running StayRTR

#### StayRTR has lots of options

The ones we need are:

-bind string Bind address (default ":8282")

-cache string URL of the cached JSON data (default "https://console.rpki-client.org/vrps.json")

We have set up our rpki-client to save the data in /var/db/rpki-client

Run the client like this:

/usr/local/bin/stayrtr -bind :3323 -cache /var/db/rpki-client/json

# RP Cache Deployment

### Network Operator design advice:

- Deploy at least two Validator Caches
- Geographically diverse
- Two different implementations
   For software independence
- Implement on a Linux container so that the container can be moved between different server clusters as required
- Configure validator to listen on both IPv4 and IPv6
   Configure routers with both IPv4 and IPv6 validator connections
- Securing the validator: Only permit routers running EBGP to have access to the validators

# RP Cache Deployment: Open Questions

### Consider two different validator cache implementations

- Gives software independence
- What happens if the different cache implementations contain different VRPs?
- Scenario 1:
  - Cache 1: route X is valid
  - Cache 2: route X is invalid
- Scenario 2:
  - Cache 1: route X is valid
  - Cache 2: route X is NotFound
- Answer: depends on router vendor implementation?!

# Configure Router to Use Cache: Cisco IOS

#### Point router to the local RPKI cache

- Server listens on port 3323
- Cache refreshed every 60 minutes (RFC8210 recommendation)
- Example:

```
router bgp 64512
bgp rpki server tcp 10.0.0.3 port 3323 refresh 3600
```

 Once the router's RPKI table is populated, router indicates validation state in the BGP table

### Cisco IOS status commands

- show ip bgp rpki servers
  - Displays the connection status to the RPKI caches
- show ip bgp rpki table
  - Shows the VRPs (validated ROA payloads)
- □ show ip bgp
  - Shows the BGP table with status indication next to the prefix
- □ show ip bgp | i ^V
  - Shows the status "valid" prefixes in the BGP table

# Configure Router to Use Cache: JunOS

#### 1. Connect to validation cache:

```
routing-options {
  validation {
    group ISP {
        session <ip address validator> {
            refresh-time 600;
            hold-time 3600;
            preference 1;
            port <port>;
            local-address <router loopback>;
            }
        }
    }
}
```

(using same parameters as for the Cisco IOS example)

# Configure Router to Use Cache: JunOS

#### 2. Configure validation policies:

```
policy-options {
 policy-statement RPKI-validation {
    term VALID {
      from {
        protocol bqp;
        validation-database valid;
      }
      then {
        validation-state valid;
        next policy;
    term INVALID {
                                                }
      from {
                                              }
        protocol bgp;
        validation-database invalid;
      }
      then {
        validation-state invalid;
        next policy;
    }
```

```
(continued) ...
```

```
term UNKNOWN {
  from {
    protocol bgp;
    validation-database unknown;
  }
  then {
    validation-state unknown;
    next policy;
  }
}
```

To drop invalid prefixes, replace the **next** policy with reject

# Configure Router to Use Cache: JunOS

#### 3. Apply policy to eBGP session:

```
protocols {
   bgp {
     group EBGP {
        type external;
        local-address 10.0.1.1;
        neighbor 10.1.15.1 {
            description "ISP Upstream";
            import [ RPKI-validation Upstream-in ];
            export LocalAS-out;
            peer-as 64511;
        }
    }
}
```

Note that policy options Upstream-in and LocalAS-out are the typical inbound and outbound filters needed for an eBGP session<sup>6</sup>

# JunOS status commands

- show validation session detail
  - Display the details of the connection to the RPKI caches
- show validation replication database
  - Shows the VRPs (validated ROA payloads)
- □ show route protocol bgp
  - Shows the BGP table with status indication next to the prefix

show route protocol bgp validation-state valid

Shows the status "valid" prefixes in the BGP table

# Configure Router to Use Cache: FRrouting

#### Point router to the local RPKI cache

- Server listens on port 3323
- Cache refreshed every 60 minutes (RFC8210 recommendation)
- Example:

```
rpki
  rpki polling_period 3600
  rpki cache 10.0.0.3 3323 preference 1
  rpki cache 10.0.1.2 3323 preference 2
exit
```

Two caches specified for redundancy

### FRrouting status commands

- show rpki cache-connection
  - Displays the connection status to the RPKI caches
- show rpki prefix-table
  - Shows the VRPs (validated ROA payloads)
- □ show ip bgp
  - Shows the BGP table
- show ip bgp rpki valid
  - Shows the status "valid" prefixes in the BGP table
  - (There are also options for "invalid" and "notfound")

# Configure Router to Use Cache: BIRD v2

#### Point BIRD to the local RPKI cache

- Server listens on port 3323
- Cache refreshed every 60 minutes (RFC8210 recommendation)
- Two caches specified for redundancy

```
roa4 table r4;
roa6 table r6;
```

```
protocol rpki validator1 {
    roa4 { table r4; };
    roa6 { table r6; };
    remote 10.0.0.3 port 3323;
    retry 300;
}
```

```
protocol rpki validator2 {
    roa4 { table r4; };
    roa6 { table r6; };
    remote 10.0.1.2 port 3323;
    retry 300;
}
```

### BIRD v2 status commands

#### show protocols validator1

- Displays the connection status to the RPKI cache "validator1"
- $\Box$  show route table r4
  - Shows the IPv4 VRPs (validated ROA payloads)

show route table r6

- Shows the IPv6 VRPs (validated ROA payloads)
- □ show route protocol <name>
  - Shows the BGP table (but has no validation info)

#### Cisco IOS/IOS-XE

- Invalid prefixes are dropped by default
  - The operator does not need to define a policy based on validation state
- Prefixes originated locally into IBGP are automatically marked as Valid
  - There is no check against the cached validation table
  - Allows operator to originate non-signed address blocks or other entity address space inside their own IBGP

#### JunOS

- Complete separation between validation table and what happens in BGP
  - There has to be a specific policy statement for any action based on validation state

### Cisco IOS/IOS-XE/IOS-XR

- Every VRP change causes a route-refresh with its BGP neighbours
   Even though VRP change only affects valid/invalid/notfound status
- Big impact for BGP sessions carrying a large or the full BGP table
   Especially for BGP peers with weak control planes!
- Transit providers need to be cautious:
  - BGP customer doing ROV on Cisco router will cause significant impact on the Access Router CPU

#### Cisco's recommended workaround:

- Turn on "Soft Reconfiguration"
- Which has memory implications, and blocks access to the route refresh CLI
- Summary: think carefully about using Cisco routers for Route Origin Validation

- Other router implementations
  - Most modern implementations save the incoming BGP table prior to policy application (ADJ-RIB-IN)
  - Changes in VRPs are applied to this stored BGP table
  - Similar behaviour to Cisco's soft-reconfiguration
- NB: It's important not to rely on Route Refresh to implement VRP changes
  - More and more frequent changes cause more and more refresh requests to peers, consuming peer CPU resources – potentially a denial-of-service attack on the peer
  - Recommended reading:
    - https://www.rfc-editor.org/info/rfc9324

- What happens when router cannot contact any validator cache?
  - Cisco IOS/IOS-XE empties the VRP table within 5 minutes
  - Juniper & Nokia keeps VRPs until their preconfigured expiry (default 60 minutes)
  - Other vendors behaviour untested

#### Design advice:

It is important to ensure that EBGP speaking routers can always remain connected to a validator cache

• Minimum of two independent caches recommended!

### Check Server

route-views>sh ip bgp rpki ser BGP SOVC neighbor is 128.223.157.83/3323 connected to port 3323 Flags 64, Refresh time is 300, Serial number is 542, Session ID is 11962 InQ has 0 messages, OutQ has 0 messages, formatted msg 3408 Session IO flags 3, Session flags 4008 Neighbor Statistics: Prefixes 669770 Connection attempts: 1170 Connection failures: 1074 Errors sent: 0 Errors received: 2

Connection state is ESTAB, I/O status: 1, unread input bytes: 0 Connection is ECN Disabled, Mininum incoming TTL 0, Outgoing TTL 255 Local host: 128.223.51.103, Local port: 64209 Foreign host: 128.223.157.83, Foreign port: 3323 Connection tableid (VRF): 0 Maximum output segment queue size: 50

Courtesy of RouteViews

### Check Server

philip@DREN-THIMPHU-BR> show validation session detail Session 103.197.176.141, State: up, Session index: 2 Group: DrukREN, Preference: 100 Local IPv4 address: 103.197.176.5, Port: 3323 Refresh time: 600s Hold time: 1800s Record Life time: 3600s Serial (Full Update): 0 Serial (Full Update): 0 Serial (Incremental Update): 1 Session flaps: 1 Session uptime: 00:19:11 Last PDU received: 00:00:34 IPv4 prefix count: 94329 IPv6 prefix count: 15992

Courtesy of DrukREN, Bhutan

### RPKI Table (IPv4) – May 2024 – RouteViews

396346 BGP sovc network entries using 63415360 bytes of memory 440705 BGP sovc record entries using 14102560 bytes of memory

| Network     | Maxlen | Origin-AS | Source | Neighbor            |
|-------------|--------|-----------|--------|---------------------|
| 1.0.0/24    | 24     | 13335     | 0      | 128.223.157.83/3323 |
| 1.0.4.0/24  | 24     | 38803     | 0      | 128.223.157.83/3323 |
| 1.0.4.0/22  | 22     | 38803     | 0      | 128.223.157.83/3323 |
| 1.0.5.0/24  | 24     | 38803     | 0      | 128.223.157.83/3323 |
| 1.0.6.0/24  | 24     | 38803     | 0      | 128.223.157.83/3323 |
| 1.0.7.0/24  | 24     | 38803     | 0      | 128.223.157.83/3323 |
| 1.0.64.0/18 | 18     | 18144     | 0      | 128.223.157.83/3323 |
| 1.1.1.0/24  | 24     | 13335     | 0      | 128.223.157.83/3323 |
| 1.1.4.0/22  | 22     | 4134      | 0      | 128.223.157.83/3323 |
| 1.1.16.0/20 | 20     | 4134      | 0      | 128.223.157.83/3323 |
| 1.2.9.0/24  | 24     | 4134      | 0      | 128.223.157.83/3323 |
| 1.2.10.0/24 | 24     | 4134      | 0      | 128.223.157.83/3323 |
| 1.2.11.0/24 | 24     | 4134      | 0      | 128.223.157.83/3323 |
| 1.2.12.0/22 | 22     | 4134      | 0      | 128.223.157.83/3323 |
| 1.3.0.0/16  | 16     | 4134      | 0      | 128.223.157.83/3323 |
| 1.6.0.0/22  | 24     | 9583      | 0      | 128.223.157.83/3323 |
|             |        |           |        |                     |

### RPKI Table (IPv6) – May 2024 – RouteViews

222696 BGP sovc network entries using 40976064 bytes of memory 229077 BGP sovc record entries using 7330464 bytes of memory

| Network            | Maxlen | Origin-AS | Source | Neighbor            |
|--------------------|--------|-----------|--------|---------------------|
| 2001:200::/32      | 32     | 2500      | 0      | 128.223.157.83/3323 |
| 2001:200:136::/48  | 48     | 9367      | 0      | 128.223.157.83/3323 |
| 2001:200:1BA::/48  | 48     | 24047     | 0      | 128.223.157.83/3323 |
| 2001:200:900::/40  | 40     | 7660      | 0      | 128.223.157.83/3323 |
| 2001:200:E00::/40  | 40     | 4690      | 0      | 128.223.157.83/3323 |
| 2001:200:8000::/35 | 35     | 4690      | 0      | 128.223.157.83/3323 |
| 2001:200:C000::/35 | 35     | 23634     | 0      | 128.223.157.83/3323 |
| 2001:200:E000::/35 | 35     | 7660      | 0      | 128.223.157.83/3323 |
| 2001:201::/32      | 32     | 0         | 0      | 128.223.157.83/3323 |
| 2001:202::/31      | 31     | 0         | 0      | 128.223.157.83/3323 |
| 2001:204::/30      | 30     | 0         | 0      | 128.223.157.83/3323 |
| 2001:209::/32      | 32     | 0         | 0      | 128.223.157.83/3323 |
| 2001:20A::/31      | 31     | 0         | 0      | 128.223.157.83/3323 |
| 2001:20C::/30      | 30     | 0         | 0      | 128.223.157.83/3323 |
| 2001:210::/29      | 29     | 0         | 0      | 128.223.157.83/3323 |
| 2001:218::/32      | 32     | 2914      | 0      | 128.223.157.83/3323 |
|                    |        |           |        |                     |

69

BGP Table (IPv4)

RPKI validation codes: V valid, I invalid, N Not found

| Network           | Metric LocPrf | Path     |                                     |
|-------------------|---------------|----------|-------------------------------------|
| V*> 1.0.0.0/24    | 0             | 17660 64 | 53 4755 13335 i                     |
| V*> 1.0.4.0/22    | 0             | 17660 75 | 45 2764 38803 i                     |
|                   |               |          |                                     |
| V*> 1.9.0.0/16    | 0             | 17660 69 | 39 4788 i                           |
| v*> 1.9.250.0/24  | 0             | 17660 29 | 14 1299 6939 6939 4788 i            |
| v*> 1.10.10.0/24  | 0             | 17660 29 | 14 64049 55836 9885 142501 148000 i |
|                   |               |          |                                     |
| v*> 1.7.228.0/23  | 0             | 17660 64 | 53 9583 i                           |
| I*> 1.7.228.0/24  | 0             | 17660 64 | 53 4755 9583 137130 i               |
|                   |               |          |                                     |
| v*> 23.252.75.0/2 | 24 0          | 17660 64 | 53 6939 i                           |
| v*> 23.252.76.0/  |               | 17660 64 | 53 6939 i                           |
| I*> 23.252.77.0/2 | 24 0          | 17660 64 | 53 3257 i                           |
| I*> 23.252.78.0/  | 24 0          | 17660 64 | 53 3257 i                           |
| V*> 23.252.79.0/  | 24 0          | 17660 64 | 53 6939 i                           |
|                   |               |          |                                     |
|                   |               |          |                                     |

Courtesy of RouteViews

# BGP Table (IPv6)

RPKI validation codes: V valid, I invalid, N Not found

| Network               | Metric LocPr | f Path                                 |
|-----------------------|--------------|----------------------------------------|
| N*> 2001::/32         | 0            | 17660 2914 6939 i                      |
| N*> 2001:4:112::/48   | 0            | 17660 36236 112 ii                     |
| V*> 2001:200::/32     | 0            | 17660 2914 2500 2500 i                 |
| V*> 2001:200:900::/40 | 0 0          | 17660 2914 17676 2500 2500 2500 7660 i |
| V*> 2001:200:e00::/40 | 0 0          | 17660 2914 17676 2500 2500 2500 4690 i |
| V*> 2001:200:c000::/3 | 35 0         | 17660 6939 23634 23634 ii              |
|                       |              |                                        |
| V*> 2001:5a0::/32     | 0            | 17660 6453 i                           |
| I*> 2001:5a0:3f06::/4 | 48 0         | 17660 6453 i                           |
| V*> 2001:5a0:4402::/4 | 48 0         | 17660 2914 20940 i                     |
| I*> 2001:5a0:4604::/4 | 48 0         | 17660 6453 i                           |
| I*> 2001:5a0:4e01::/4 | 48 0         | 17660 6453 i                           |
| I*> 2001:5a0:9000::/3 | 36 0         | 17660 6453 i                           |
| V*> 2001:5a0:9000::/3 | 38 0         | 17660 6453 i                           |
| V*> 2001:5a0:9001::/4 | 48 0         | 17660 6453 7029 i                      |
| • • •                 |              |                                        |

Courtesy of RouteViews

### **RPKI BGP State: Valid**

```
route-views>sh bgp ipv6 unicast 2001:240::/32
BGP routing table entry for 2001:240::/32, version 95472891
Paths: (13 available, best #10, table default)
Not advertised to any peer
Refresh Epoch 1
20912 6939 2497
2001:40D0::1E from 2001:40D0::1E (77.39.192.1)
Origin IGP, localpref 100, valid, external
path 7F16801AE960 RPKI State valid
rx pathid: 0, tx pathid: 0
Refresh Epoch 1
```

### **RPKI BGP State: Invalid**

```
route-views>sh bgp ipv6 unicast 2001:5a0:3f06::/48
BGP routing table entry for 2001:5A0:3F06::/48, version 98192653
Paths: (1 available, best #1, table default)
Not advertised to any peer
Refresh Epoch 1
20912 49367 6762 6453
2001:40D0::1E from 2001:40D0::1E (77.39.192.1)
Origin IGP, localpref 100, valid, external, best
path 7F1561494A90 RPKI State invalid
rx pathid: 0, tx pathid: 0x0
```

### **RPKI BGP State: Not Found**

```
route-views>sh bgp ipv6 unicast 2001::/32
BGP routing table entry for 2001::/32, version 95354292
Paths: (11 available, best #6, table default)
Not advertised to any peer
Refresh Epoch 1
20912 6939
2001:40D0::1E from 2001:40D0::1E (77.39.192.1)
Origin IGP, localpref 100, valid, external
path 7F16801B0F60 RPKI State not found
rx pathid: 0, tx pathid: 0
```

## Agenda

- Background Origin Validation and RPKI
- Route Origin Authorisation
- Route Origin Validation
- Validator Caches
- Deploying RPKI
- RPKI Deployment Status
- What's Next?

# Deploying RPKI

Deploying and using RPKI

## Using RPKI

- Network operators can make decisions based on RPKI state:
  - Invalid discard the prefix please do this now!
  - NotFound let it through (maybe low local preference)
  - Valid let it through (high local preference)
- Some operators even considering making "Not Found" a discard event
  - But then Internet IPv4 BGP table would shrink to about 450000 prefixes and the IPv6 BGP table would shrink to about 95000 prefixes!

## Using RPKI

### □ *Invalid* means discarding the prefix

- Which means it does not go into the BGP RIB or the FIB
- And that means routing falls back to the covering aggregate
   (Subnet might be a hijack, so the covering aggregate will be the correct path)
- In the absence of a covering aggregate, the default route will be used

### Running ROV in an AS with a default route?

- Invalids dropped, so it is likely the default will be used instead
- Either move into default free zone (full tables), otherwise implementing ROV is more an academic/educational exercise

## Using RPKI

- Should invalid routes be routed to the Null/Discard interface rather than just dropped?
  - If this is done, then access to that route is totally blocked, even if the covering aggregate offers the legitimate path to the destination
    - Which means the hijack is inadvertently partially successful because access to the legitimate destination is prevented
  - Answer: NO, please don't do this

## Deploying RPKI within an AS

- For fully supported Route Origin Validation across the network:
  - All EBGP speaking routers need talk with a validator
    - Supporting ROV means dropping invalids as they arrive in the network
    - EBGP speaking routers are part of the operator IBGP mesh
  - IBGP speaking routers do not need to talk with a validator
    - Only valid and NotFound prefixes will be distributed from the EBGP speaking routers
    - The validation table is not distributed from router to router

### Remember:

Cisco IOS/IOS-XE drops invalids by default – to allow invalids to be distributed by IBGP, use the per address-family command:

```
bgp bestpath prefix-validate allow-invalid
```

## Propagating validation state

- RFC8097 describes the propagation of validation state between iBGP speakers
  - Defines an opaque extended BGP community

| Extended Community | Meaning  |
|--------------------|----------|
| 0x4300:0:0         | Valid    |
| 0x4300:0:1         | NotFound |
| 0x4300:0:2         | Invalid  |

- These extended communities can be used in IBGP to allow distribution of validation state along with the prefix if desired
- On Cisco IOS/IOS-XE:

neighbor x.x.x.x announce rpki state

For JunOS, policy needs to be explicitly configured

## Propagating validation state

There are two important caveats when propagating validation state:

- Interoperability is the defined opaque extended community supported on all vendor equipment in a multi-vendor network?
  - Until recently JunOS would not allow the required opaque extended communities to be configured at the command line

#### Cisco IOS/IOS-XE behaviour:

- Adds a step to the best path selection algorithm: checks validation state (*valid* preferred over *not found*) before checking local preference
  - This cannot be turned off <a>e</a>

## JunOS: opaque extended community

Supported only in more recent JunOS releases

Fixed from 17.4R3, 18.2R3, 18.4R2...

```
policy-options {
    community RPKI-VALID members 0x4300:0:0;
    community RPKI-UNKNOWN members 0x4300:0:1;
    community RPKI-INVALID members 0x4300:0:2;
}
```

## JunOS: opaque extended community

- And we can now set policy to detect these communities being sent from Cisco IOS/IOS-XE routers
  - Under "policy-options":

```
policy-statement PEER-in {
    term VALID {
        from community RPKI-VALID;
        then {
            validation-state valid:
            next policy;
        }
    term INVALID {
        from community RPKI-INVALID;
        then {
            validation-state invalid:
            next policy;
    term UNKNOWN {
        from community RPKI-UNKNOWN;
        then {
            validation-state unknown;
            next policy;
```

84

## Propagating validation state: Cisco IOS

### Cisco IOS/IOS-XE behaviour – example:

- Prefix learned via two paths via two separate EBGP speaking routers
- Prefix and validation state distributed by IBGP to core router (route reflector):

| Network             | Next Hop   | Metric | LocPrf | Weight | Path                |
|---------------------|------------|--------|--------|--------|---------------------|
| V*>i 61.45.249.0/24 | 100.68.1.1 | 0      | 50     | 0      | 121 20 135534 i     |
| N* i                | 100.68.1.3 | 0      | 200    | 0      | 20 135534 i         |
| V*>i 61.45.250.0/24 | 100.68.1.1 | 0      | 50     | 0      | 121 30 135535 i     |
| N* i                | 100.68.1.3 | 0      | 150    | 0      | 30 135535 i         |
| V*>i 61.45.251.0/24 | 100.68.1.1 | 0      | 50     | 0      | 121 122 40 135536 i |
| N* i                | 100.68.1.3 | 0      | 150    | 0      | 40 135536 i         |

- One EBGP speaking router talks with validator
- The other EBGP speaking router does not (due to error or design)
- Core router best path selection prefers valid path over not found even if the latter has higher local preference

### Propagating validation state: Cisco IOS

#### Looking at the path detail:

```
BGP routing table entry for 61.45.249.0/24, version 32
BGP Bestpath: deterministic-med
Paths: (2 available, best #1, table default)
 Not advertised to any peer
 Refresh Epoch 1
  121 20 135534, (Received from a RR-client)
    100.68.1.1 (metric 2) from 100.68.1.1 (100.68.1.1)
      Origin IGP, metric 0, localpref 50, valid, internal, best
     Extended Community: 0x4300:0:0
                                                                       Note best path
     path 67A585D0 RPKI State valid
 Refresh Epoch 1
  20 135534, (Received from a RR-client)
    100.68.1.3 (metric 2) from 100.68.1.3 (100.68.1.3)
      Origin IGP, metric 0, localpref 200, valid, internal
      Community: 10:1100
     Extended Community: 0x4300:0:1
     path 67A58918 RPKI State not found
                                                                                   86
```

## Propagating validation state

- Consider carefully if this is desired
- Current standard practice is to:
  - EBGP speaking routers have session with two diverse/redundant validators
  - Check validation state on EBGP speaking routers
  - Drop invalids on EBGP speaking routers
  - Distribute remaining prefixes by IBGP
  - Avoid propagating validation state (at least in Cisco IOS)
     -or-
  - Make sure that EBGP speaking routers never lose their connectivity to validators

## **RPKI** Summary

All AS operators must consider deploying:

- Signing ROAs
- Dropping Invalids (ROV)
- An important step to securing the routing system
- Doesn't secure the path, but that's the next important hurdle to cross
- With origin validation, the opportunities for malicious or accidental mis-origination are considerably reduced
- □ FAQ:
  - https://nlnetlabs.nl/projects/rpki/faq/

## Agenda

- Background Origin Validation and RPKI
- Route Origin Authorisation
- Route Origin Validation
- Validator Caches
- Deploying RPKI
- RPKI Deployment Status
- What's Next?

# **RPKI Deployment Status**

## **RPKI Deployment Status**

- NIST keeps track of deployment status for research purposes:
  - https://rpki-monitor.antd.nist.gov/
- IIJ Labs RPKI statistics:
  - https://ihr.iijlab.net/ihr/en-us/rov
- RIPE NCC statistics:
  - https://certification-stats.ripe.net/
- NSRC ROA status:
  - Routinator Validator running at NSRC
  - https://routinator.nsrc.org/

### Number of ROAs



https://certification-stats.ripe.net/

### IPv4 Address Space in ROAs (/24s)



https://certification-stats.ripe.net/

### IPv6 Address Space in ROAs (/48s)



https://certification-stats.ripe.net/

| Ente | r an AS, IXP, or co | untry name |                                                 | Q                                                |              | ••••••••••••••••••••••••••••••••••••••• | Hor           | ·                                       | ts 🔻 To                 | ools 🔻 Docu                                      | mentation API            | Contact           |
|------|---------------------|------------|-------------------------------------------------|--------------------------------------------------|--------------|-----------------------------------------|---------------|-----------------------------------------|-------------------------|--------------------------------------------------|--------------------------|-------------------|
|      |                     |            |                                                 |                                                  |              | igin Vali                               |               | n                                       |                         | TTT                                              | Iabo                     |                   |
|      |                     |            |                                                 | 3-day r                                          | eport endi   | ng on 21 May 202                        | 4 🛱           |                                         |                         | 11)                                              | Labs                     |                   |
|      | RPKI inv            |            |                                                 | invalid                                          |              |                                         |               | IIJ Labs RPKI<br>Statistics             |                         |                                                  |                          |                   |
|      |                     | ROUTES     |                                                 | ORIGIN ASES                                      |              |                                         | MAIN TRAN     | ISITS                                   |                         | A                                                | API                      |                   |
|      | <b>Q</b> Search     |            |                                                 |                                                  |              |                                         |               |                                         |                         |                                                  | https://ih               | r.iijlab.net/ihr/ |
|      |                     |            | Route                                           |                                                  |              |                                         | Status 💿      |                                         |                         | AS depe                                          | ndency 💿                 |                   |
|      | Country             | Origin ASN | Prefix                                          |                                                  | RPKI         | IRR                                     | Prefix        | Origin ASN                              | Visibility $\downarrow$ | Main Transits                                    |                          |                   |
|      | US                  | AS6939     | 45.12.83.0/24                                   | autogen                                          | ×<br>Invalid | × Invalid                               | ✓<br>assigned | <ul> <li>✓</li> <li>assigned</li> </ul> | 66.8%                   |                                                  |                          |                   |
|      | SC                  | AS132839   | 156.255.216.0/24                                | ICIDC Limited                                    | ×<br>Invalid | 🗸 Valid                                 | ✓<br>assigned | ✓<br>assigned                           | 65.2%                   | AS13335                                          |                          |                   |
|      | ZZ                  | AS13335    | 103.21.244.0/24                                 | Cloudflare Hong Kong, LLC 101 Townsend Street    | ×<br>Invalid | × Invalid (more specific)               | ✓<br>assigned | ✓<br>assigned                           | 63.6%                   |                                                  |                          |                   |
|      | НК                  | AS135357   | 156.254.32.0/19                                 | CMI IP Transit                                   | ×<br>Invalid | 🗙 Invalid                               | ✓<br>assigned | ✓<br>assigned                           | 63.6%                   | AS13335                                          |                          |                   |
|      | US                  | AS13335    | 68.67.65.0/24<br>SBA EDGE COLOCATIO<br>announce | IN CUSTOMERS (former GORACK) - Arelion           | ×<br>Invalid | × Invalid                               | ✓<br>assigned | ✓<br>assigned                           | 63.6%                   |                                                  |                          |                   |
|      | VG                  | AS209242   | 194.40.241.0/24                                 |                                                  | ×<br>Invalid | × Invalid                               | ✓<br>assigned | ✓<br>assigned                           | 61.5%                   | AS13335                                          |                          |                   |
|      | ZA                  | AS209242   | 154.16.94.0/24                                  | AS209242                                         | ×<br>Invalid | 🗸 Valid                                 | ✓<br>assigned | ✓<br>assigned                           | 59.9%                   | AS13335                                          |                          |                   |
|      | ZZ                  | AS13335    | 2606:4700:7000::/48<br>101 Town:                | send Street, San Francisco, California 94107, US | ×<br>Invalid | Invalid (more specific)                 | ✓<br>assigned | ✓<br>assigned                           | 59.6%                   |                                                  |                          |                   |
|      | AU                  | AS36040    | 202.172.96.0/19                                 | Proxy route object registered by AS38195         | ×<br>Invalid | 🗙 Invalid                               | ✓ assigned    | ✓<br>assigned                           | 56.7%                   | <b>AS15830, AS17819,</b><br>AS3356 , AS6461 , AS |                          | 95                |
|      | КН                  | AS54994    | 45.64.127.0/24                                  | Proxy-registered route object                    | ×<br>Invalid | × Invalid                               | ✓<br>assigned | ✓<br>assigned                           | 56.7%                   | <b>AS38623, AS9304,</b> A<br>AS6461              | <b>\$6762</b> , A\$7473, |                   |

| Enter | r an AS, IXP, or country | name                                               | Q                               | · ·           | orts 🕶 Tools 👻 Docume              | entation API    | Contact           |
|-------|--------------------------|----------------------------------------------------|---------------------------------|---------------|------------------------------------|-----------------|-------------------|
|       |                          |                                                    | Sector Contegin Va              | alidation     | TTT                                | Taba            | DDVI              |
|       |                          |                                                    | 3-day report ending on 21 May 2 | 2024 🛱        | 11)                                | LaDS            | NP N1             |
|       |                          |                                                    | RPKI invalid                    | •<br>         | Stat                               | istics          | RPKI              |
|       |                          | ROUTES                                             | ORIGIN ASES                     | MAIN TRANSITS | API                                |                 |                   |
|       | Q Search                 |                                                    |                                 |               |                                    | https://ih      | r.iijlab.net/ihr/ |
|       | ASN                      | Name                                               |                                 | RPKI invalid  | RPKI invalid (more specific)       | Total ↓         |                   |
|       | AS18101                  | RELIANCE-COMMUNICATIONS-IN Reliance Communication  | ons Ltd.DAKC MUMBAI, IN         | 2             | 359                                | 361             |                   |
|       | AS7029                   | WINDSTREAM, US                                     |                                 | 1             | 151                                | 152             |                   |
|       | AS4804                   | MPX-AS Microplex PTY LTD, AU                       |                                 | 0             | 115                                | 115             |                   |
|       | AS12389                  | ROSTELECOM-AS PJSC Rostelecom, RU                  |                                 | 83            | 7                                  | 90              |                   |
|       | AS39891                  | ALJAWWALSTC-AS Saudi Telecom Company JSC, SA       |                                 | 80            | 0                                  | 80              |                   |
|       | AS21491                  | UGANDA-TELECOM Uganda Telecom, UG                  |                                 | 0             | 77                                 | 77              |                   |
|       | AS58224                  | TCI Iran Telecommunication Company PJS, IR         |                                 | 0             | 55                                 | 55              |                   |
|       | AS43940                  | MTEL-AS Drustvo za telekomunikacije "MTEL" DOO, ME |                                 | 0             | 51                                 | 51              |                   |
|       | AS7713                   | TELKOMNET-AS-AP PT Telekomunikasi Indonesia, ID    |                                 | 1             | 43                                 | 44              |                   |
|       | AS45090                  | TENCENT-NET-AP Shenzhen Tencent Computer Systems   | Company Limited, CN             | 0             | 36                                 | 36              | 96                |
|       |                          |                                                    |                                 |               | Records per page: 10 👻 1-10 of 810 | < < <b>&gt;</b> | •                 |

| Enter an AS, IXP, or country n | ame <b>C</b>                                           | L.                              | Home          | Reports 🕶 Tools 👻 Docum            | entation API | Contact           |
|--------------------------------|--------------------------------------------------------|---------------------------------|---------------|------------------------------------|--------------|-------------------|
|                                |                                                        | <b>ع</b> Route Origin Va        | lidation      | TTT                                | T a b a      |                   |
|                                |                                                        | 3-day report ending on 21 May 2 | 024 🛱         | 11) .                              | Lads         | <b>KPKI</b>       |
|                                |                                                        | RPKI invalid                    | •             | Stat                               | tistics      | RPKI              |
|                                | ROUTES                                                 | ORIGIN ASES                     | MAIN TRANSITS | API                                |              |                   |
| <b>Q</b> Search                |                                                        |                                 |               |                                    | https://ih   | r.iijlab.net/ihr/ |
| ASN                            | Name                                                   |                                 | RPKI invalid  | RPKI invalid (more specific)       | Total 🗸      |                   |
| AS6762                         | SEABONE-NET TELECOM ITALIA SPARKLE S.p.A., IT          |                                 | 680           | 1484                               | 2164         |                   |
| AS6453                         | AS6453, US                                             |                                 | 145           | 348                                | 493          |                   |
| AS7473                         | SINGTEL-AS-AP Singapore Telecommunications Ltd, SG     |                                 | 98            | 298                                | 396          |                   |
| AS15412                        | FLAG-AS FLAG TELECOM UK LIMITED, GB                    |                                 | 18            | 377                                | 395          |                   |
| AS3356                         | LEVEL3, US                                             |                                 | 160           | 227                                | 387          |                   |
| AS6461                         | ZAYO-6461, US                                          |                                 | 66            | 271                                | 337          |                   |
| AS9498                         | BBIL-AP BHARTI Airtel Ltd., IN                         |                                 | 72            | 170                                | 242          |                   |
| AS49666                        | TIC-GW-AS Telecommunication Infrastructure Company, IR |                                 | 24            | 110                                | 134          |                   |
| AS4755                         | TATACOMM-AS TATA Communications formerly VSNL is Le    | eading ISP, IN                  | 56            | 49                                 | 105          |                   |
| AS39386                        | STC-IGW-AS Saudi Telecom Company JSC, SA               |                                 | 87            | 3                                  | 90           |                   |
|                                |                                                        |                                 |               | Records per page: 10 💌 1-10 of 573 | < < > >      | 97                |

## Major Operators deploying RPKI and ROV

#### Arelion

| aut-num:      | AS1299                                              |
|---------------|-----------------------------------------------------|
| org:          | ORG-TCA32-RIPE                                      |
| as-name:      | TWELVE99                                            |
| descr:        | Arelion, f/k/a Telia Carrier                        |
| <snip></snip> |                                                     |
| remarks:      | AS1299 is matching RPKI validation state and reject |
| remarks:      | invalid prefixes from peers and customers.          |
| remarks:      |                                                     |
| remarks:      | Our looking-glass at https://lg.twelve99.net/ marks |
| remarks:      | validation state for all prefixes.                  |
| remarks:      |                                                     |
| remarks:      | Please review your registered ROAs to reduce number |
| remarks:      | of invalid prefixes.                                |

## Major Operators deploying RPKI and ROV

- More and more operators are deploying RPKI and ROV
- Not just transit providers!
- But also:
  - Content providers
  - IXPs
  - R&E networks
  - Access providers

- Arelion
- NTT
- Lumen
- 🗆 HE
- GTT
  - Workonline
- SEACOM
- Cloudflare
- □ AMS-IX
- LINX
- DE-CIX

- Terrehost
- Vocus
- Telstra
- □ REANNZ
- Cogent
- GR-IX
- Swisscom
- Netflix
- □ UAE-IX
- □ ...

## Agenda

- Background Origin Validation and RPKI
- Route Origin Authorisation
- Route Origin Validation
- Validator Caches
- Deploying RPKI
- RPKI Deployment Status
- What's Next?

## What's next?

ASPA, MANRS,...

101

## Autonomous System Provider Authorisation

- ASPA is the next step after signing ROAs and implementing ROV
  - ASPA is a digitally signed object that binds, for a selected address family, a Set of Provider AS numbers to a Customer AS number (in terms of BGP announcements)
  - The object is signed by the holder of the Customer AS
     The AS holder is signing who their adjacent ASes are
  - The ASPA record attests that the Customer AS has authorised the Set of Provider ASes to propagate the customer's IPv4/IPv6 announcements onwards
  - https://datatracker.ietf.org/doc/draft-ietf-sidrops-aspa-verification/

## ASPA implementation

### Once the customer has signed their ASPA attestation:

- The neighbour AS providers (relying party) need to have access to the complete set of cryptographically valid ASPAs
- The relying party retrieves all cryptographically valid ASPAs for the customer AS
  - If none exist, then the outcome is "Unknown"
  - If the relying party's AS is included, the outcome is "Valid"
  - If the relying party's AS is NOT included, the outcome is "Invalid"

## ASPA development

#### Discussion ongoing in IETF SIDR Ops Working Group

- Recent (last minute) change: removal of address family support
  - Which means that the relationship between two ASes must be the same for IPv4 and IPv6 (congruent)
  - Operationally this is not the case in reality, peering policies for IPv4 are often different from those for IPv6
  - Could leave ASes without identical IPv4 and IPv6 peering policies open to the abuse ASPA was meant to help prevent
  - But much easier to implement!
- Working documents:
  - https://datatracker.ietf.org/doc/draft-ietf-sidrops-8210bis-10
  - https://datatracker.ietf.org/doc/draft-ietf-sidrops-aspa-profile
  - https://datatracker.ietf.org/doc/draft-ietf-sidrops-aspa-verification

## ASPA development

#### Router OS support is still in the early stages

- NIST BGP-SRx and OpenBGPD support ASPA (May 2023)
- BIRD being worked on
- FRRouting & mainstream router vendors unknown
- Validator implementations are still in the early stages:
  - RPKI-client & StayRTR supports ASPA (May 2023)
  - Routinator support due soon
  - RPSTIR2 testing ASPA
- RIR support
  - Unknown all RIRs will need to allow address holders to create ASPA objects

## Routing Security

### Implement the recommendations in https://www.manrs.org

- Prevent propagation of incorrect routing information
   Filter BGP peers, in & out!
- 2. Prevent traffic with spoofed source addresses
   > BCP38 Unicast Reverse Path Forwarding
- 3. Facilitate communication between network operators
  - » NOC to NOC Communication
  - > Up-to-date details in Route and AS Objects, and PeeringDB
- 4. Facilitate validation of routing information
  - » Route Origin Authorisation using RPKI



### Summary

- Deploy RPKI
  - It is in the Internet's best interest
- With wide deployment of RPKI it becomes possible to only allow validated prefix announcements into the Internet Routing System
  - Prevents mis-originations
  - Prevents prefix hijack
  - Makes the Internet infrastructure more reliable and more stable
  - Allows the next step: AS-PATH validation

# BGP Origin Validation

**ISP** Workshops