
BGP Origin Validation

ISP Workshops

1Last updated 21st May 2024

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license
(http://creativecommons.org/licenses/by-nc/4.0/)

Acknowledgements
p This material includes valuable contributions by Randy Bush, Mark

Tinka, Aftab Siddiqui, Tashi Phuntsho, Warrick Mitchell and others

p Use of these materials is encouraged as long as the source is fully
acknowledged and this notice remains in place

p Bug fixes and improvements are welcomed
n Please email workshop (at) bgp4all.com

2
Philip Smith

BGP Videos
p NSRC has produced a library of BGP presentations (including this

one), recorded on video, for the whole community to use
n https://learn.nsrc.org/bgp

3

Agenda
p Background – Origin Validation and RPKI
p Route Origin Authorisation
p Route Origin Validation
p Validator Caches
p Deploying RPKI
p RPKI Deployment Status
p What’s Next?

4

Why Origin Validation?

The trust model of BGP

5

Validating BGP Route Announcements
p How do we know that an AS is permitted to originate the

prefix it is originating?
p Implicit trust?
p Because the Internet Routing Registry says so?

n The Internet Routing Registry (IRR) only documents routing
policy

n And has a large amount of outdated/incorrect information
p Is there something else?

n Yes: Route Origin Authorisation

6

BGP – Why Origin Validation?
p Prevent YouTube accident & Far Worse

n Almost every day there is an incident of prefix hijack
somewhere on the Internet

p Prevents most accidental announcements
n “Fat finger”, missing BGP policy configuration, etc

p Does not prevent malicious path attacks
n Example: alteration of AS-PATH attribute along the

announcement chain
n That requires ‘Path Validation’, using BGPsec

RPKI
p RPKI – Resource Public Key Infrastructure

n The Certificate Infrastructure for origin and path validation

p We need to be able to authoritatively prove who owns an
IP prefix and which AS(s) may announce it
n Prefix ownership follows the allocation hierarchy
n IANA → RIRs → ISPs → etc

What is RPKI?
p Resource Public Key Infrastructure (RPKI)

n A security framework for verifying the association between resource
holder and their Internet resources

n Created to address the issues discussed in RFC 4593 “Generic Threats to
Routing Protocols” (Oct 2006)

p Helps to secure Internet routing by validating routes
n Proof that prefix announcements are coming from the legitimate holder

of the resource
n RFC 6480 – An Infrastructure to Support Secure Internet Routing (Feb

2012)
n RFC 7115 – Origin Validation Operation Based on the Resource Public

Key Infrastructure (RPKI)
9

Benefits of RPKI for Routing
p Prevents route hijacking

n A prefix originated by an AS without authorisation
n Reason: malicious intent

p Prevents mis-origination
n A prefix that is mistakenly originated by an AS which does not

own it
n Also, route leakage
n Reason: configuration mistake / fat finger

10

BGP Security (BGPsec)
p Extension to BGP that provides improved security for BGP

routing
n Published as RFC8205
n Not yet deployed

p Implemented via a new optional non-transitive BGP
attribute (BGPsec_PATH) that contains a digital signature

p BGPsec supplements BGP origin validation
n Allows routers to generate, propagate, and validate BGP update

messages with the BGPsec_PATH attribute set

11

BGPsec Components
p Origin Validation

n Using the RPKI to detect and prevent mis-originations of someone else’s prefixes
(RFC6483)

n Implementation started in 2012

p AS-Path Validation
n BGPsec has not yet begun deployment (cryptographic computation load)
n soBGP was one early option

p https://datatracker.ietf.org/doc/draft-white-sobgp-architecture/ (expired)
p Not standardised or implemented

n ASPA (Autonomous System Provider Authorisation) is one more step towards full
BGPsec deployment

p https://datatracker.ietf.org/doc/draft-ietf-sidrops-aspa-verification/

RPKI Nomenclature
p Issuing Party

n The entity operating as certificate authority (CA)

p Trust Anchor
n The authority from which trust is assumed, rather than derived from

intermediates – the root of the tree

p Relying Party
n The operator system gathering data from the certificate authority to be

used for validation

p Route Origin Authorisation
n A digital object linking an AS number with the IP address space it is

authorised to originate
13

Issuing Party
p Internet Registries (RIR, NIR, Large LIRs)
p Acts as a Certificate Authority and issues certificates for

customers
p Provides a web interface to issue ROAs for customer prefixes
p Publishes the ROA records

14RIR web interface

RIR RPKI
Engine

repository

RIR public repository

Relying Party (RP)

15

IANA

AfriNIC
Repo

APNIC
Repo

ARIN
Repo

LACNIC
Repo

RIPE NCC
Repo

LIR Repo

RP Cache

Validated
Cache

RPKI-to-Router
Protocol

RP Cache software also
known as a Validator

RPKI Components

16

Web interface

RPKI Engine Trust Anchor

rpki.apnic.net

Trust Anchor

rrdp.arin.net

Trust Anchor

rpki.afrinic.net

Trust Anchor

rrdp.lacnic.net

Trust Anchor

rpki.ripe.net

validator RPKI-to-Router
Protocol Network

Operator

Each of the RIRs publishes their “Trust Anchor Locator” (TAL) – the file
that contains both the URL of the RPKI repository and the public key

RPKI Service Models
p Hosted Model:

n The RIR runs the CA on behalf of its members
p Manage keys, repository, etc
p Generate certificates for resource certifications

p Delegated Model:
n Member becomes the CA, delegated from the parent CA (the

RIR)
p Operates the full RPKI system
p Several entities now operating delegated CAs

n CA Software
p NLnetLabs Krill: https://www.nlnetlabs.nl/projects/rpki/krill/

17

Agenda
p Background – Origin Validation and RPKI
p Route Origin Authorisation
p Route Origin Validation
p Validator Caches
p Deploying RPKI
p RPKI Deployment Status
p What’s Next?

18

Route Origin Authorisation

19

Route Origin Authorisation (ROA)
p A digital object that contains a list of address prefixes

and one AS number
p It is an authority created by a prefix holder to authorise

an AS Number to originate one or more specific route
advertisements

p Publish a ROA using your RIR member portal
n Consult your RIR for how to use their member portal to publish

your ROAs

20

Route Origin Authorisation
p A typical ROA would look like this:

p There can be more than one ROA per address block
n Allows the operator to originate prefixes from more than one AS
n Caters for changes in routing policy or prefix origin

21

Prefix 10.10.0.0/16

Max-Length /18

Origin-AS AS65534

Creating ROAs
p Only create ROAs for the aggregate and the exact

subnets expected in the routing table
p Examples:

22

Prefix Max Length Origin AS Comments

10.10.0.0/16 /24 65534 ROA covers /16 through to /24 – any announced
subnets to /24 will be Valid if from AS65534

10.10.0.0/16 /16 65534 ROA covers only /16 – any announced subnets
will be Invalid

10.10.4.0/22 /24 65534 ROA covers this /22 through to /24

10.10.32.0/22 /24 64512 Valid ROA covers /22 through to /24
announcements from AS64512

Creating ROAs – Important Notes
p Always create ROAs for the aggregate and the individual

subnets being routed in BGP
p Example:

n If creating a ROA for 10.10.0.0/16 and “max prefix” length is
set to /16

p There will only be a valid ROA for 10.10.0.0/16
p If a subnet of 10.10.0.0/16 is originated, it will be state Invalid

23

Creating ROAs – BCP185
p RFC9319/BCP185

n https://www.rfc-editor.org/rfc/rfc9319.html

n Avoid using maxLength attribute unless in special cases
n Do NOT create ROAs for subnets of an aggregate unless they

are actively routed
p If ROA exists, but subnet is not routed, it leaves an opportunity for

someone else to mis-originate the subnet using the valid origin AS,
resulting in a hijack

n Recommendation: Use minimal ROAs wherever possible – only
for prefixes that are actually being announced

24

Creating ROAs – Important Notes
p Some current examples of problematic ROAs:

n This means that any and every subnet of 2C0F:F0C8::/32 originated by AS328037
is valid

p An attacker can use AS328037 as their origin AS to originate 2C0F:F0C8:A0:/48 to deny
service to that address block

p Known as a validated hijack!

n This means that any subnet of 1.34.0.0/15 down to a /24 as originated by
AS3462 is valid

p An attacker can use AS3462 as their origin AS to originate 1.34.10.0/24 to deny service to
that address block

25

Creating ROAs: “Validated Hijack”

p If the 1.34.10.0/24 prefix had had no ROA, route origin validation would
have dropped the invalid announcement at the upstream AS 26

Upstream AS3462
Upstream

Viewer

Global Internet

Upstream
AS3462

Attacker: uses target AS
as their origin
Originates: 1.34.10.0/24

Originator of 1.34.0.0/15
with ROA MaxLen of /24

Valid ROA for /15 and /24
Best path selection: /24
preferred over the /15

Traffic Flow for 1.34.10.0/24
Attacker

Creating ROAs: pre-RIR Address Space
p Some entities were assigned address space by InterNIC

n This is prior to the existence of the RIRs

p How to sign ROAs for these resources?
p Some RIRs will support the signing of legacy address space ROAs

n If there is documentation proving the holding
n If there is some service agreement for resources allocated by the RIR
n Or by some other arrangement
n Example, APNIC:

p https://www.apnic.net/wp-content/uploads/2018/02/APNIC-AR-2017.pdf
n Example, RIPE NCC:

p https://www.ripe.net/manage-ips-and-asns/resource-management/certification/resource-
certification-rpki-for-provider-independent-end-users

n Example, ARIN:
p LRSA (Legacy Registration Services Agreement) now permits signing of ROAs for legacy

address space
27

Agenda
p Background – Origin Validation and RPKI
p Route Origin Authorisation
p Route Origin Validation
p Validator Caches
p Deploying RPKI
p RPKI Deployment Status
p What’s Next?

28

Route Origin Validation

29

Route Origin Validation
p Router must support RPKI
p Checks an RP cache / validator

n Uses RtR protocol, described in RFC8210
p Validation returns 3 states:

30

State Description

Valid When authorisation is found for prefix X coming
from ASN Y

Invalid When authorisation is found for prefix X but not
from ASN Y, or not allowable subnet size

Not Found When no authorisation data is found for prefix X

Route Origin Validation – AS0
p RFC6483 also describes “Disavowal of Routing

Origination”
n AS 0 has been reserved for network operators and other entities

to identify non-routed networks
n Which means:

p “A ROA with a subject of AS0 (AS0 ROA) is an attestation by the holder of
a prefix that the prefix described in the ROA, and any more specific prefix,
should not be used in a routing context”

p Any prefixes with ROA indicating AS0 as the origin AS
need to be dropped
n If these prefixes appear with any other origin, their ROAs will be

invalid, achieving this goal 31

Route Origin Validation – AS0
p Possible use cases of AS0:

n Internal use of a prefix that should not appear in the global BGP
table

n Internet Exchange Point LAN must never appear in the global
BGP table

n Private Address space (IPv4) and non-Global Unicast space
(IPv6)

n Unassigned address space
p This is under discussion within the various RIR policy fora

n IPv4 and IPv6 address resources which should not appear in the
global BGP table

p For example, the special use address space described in RFC6890 32

Route Origin Validation – AS0
p APNIC & LACNIC have now published their AS0 TALs

n Operated separately from the regular TAL
p https://www.apnic.net/community/security/resource-certification/trust-anchor-locator/
p https://www.lacnic.net/4984/2/lacnic/rpki-rpki-trust-anchor

n Simply add to the TAL folder in the validator cache

p Some examples of AS0 being used today:

33

RPKI/RTR prefix table
Prefix Prefix Length Origin-AS
2.57.180.0 22 - 24 0
5.57.80.0 22 - 22 0
23.4.85.0 24 - 24 0
23.173.176.0 24 - 24 0
23.211.114.0 23 - 24 0
45.12.44.0 22 - 22 0
58.181.75.0 24 - 24 0
109.122.244.0 22 - 22 0

Route Origin Validation – Implementations
p Cisco IOS – available from release 15.2
p Cisco IOS/XR – available from release 4.3.2
p Juniper JunOS – available from release 12.2
p Nokia – available from release R12.0R4
p Huawei – available from release V800R009C10
p FRR – available from release 4.0
p BIRD – available from release 1.6
p OpenBGPD – available from OpenBSD release 6.4
p GoBGP – available since 2018
p VyOS – available from release 1.2.0-RC11
p Mikrotik ROS – available from release v7
p Arista EOS – available from release 4.24.0F

34

Agenda
p Background – Origin Validation and RPKI
p Route Origin Authorisation
p Route Origin Validation
p Validator Caches
p Deploying RPKI
p RPKI Deployment Status
p What’s Next?

35

Validator Cache

Choosing, deploying, and operating a
Validator Cache

36

RPKI Validator Caches (1)
p NLnet Labs Routinator 3000

n https://www.nlnetlabs.nl/projects/rpki/routinator/
n https://github.com/NLnetLabs/routinator
n Packages available for Debian/Ubuntu, RHEL/CentOS & FreeBSD
n (Can also be built from source)

p LACNIC/NIC Mexico validator (FORT)
n https://fortproject.net/en/validator
n https://nicmx.github.io/FORT-validator/
n Packages available for Debian/Ubuntu, RHEL/CentOS & FreeBSD
n (Can also be built from source)

37

RPKI Validator Caches (2)
p RPKI-client

n https://www.rpki-client.org/
n https://tracker.debian.org/pkg/rpki-client
n RPKI repository query system (output for OpenBGPD, BIRD, json)
n For OpenBSD, with ports for Debian/Ubuntu, RHEL/CentOS, FreeBSD, macOS

p StayRTR
n https://github.com/bgp/stayrtr
n https://tracker.debian.org/pkg/stayrtr
n RPKI to Router protocol implementation (input JSON formatted VRP exports)
n (hard fork of Cloudflare GoRTR)
n Works on anything Go runs on (?)

p Note:
n RPKI-client and StayRTR are used together

38

RPKI Validator Caches (3)
p RPKI-Prover

n https://github.com/lolepezy/rpki-prover

p rpstir2
n https://github.com/bgpsecurity/rpstir2

p No longer maintained – out of date, do NOT use:
n Dragon Research Labs “rcynic”
n Cloudflare validator (OctoRPKI/GoRTR)

p StayRTR is a fork of GoRTR

n RIPE NCC validator
p Version 2 and 3

39

Installing a validator
p Three validators are widely used

n Routinator 3000
n FORT
n RPKI-client/StayRTR

p Listed in order of ease of installation 😀
p For installation details on Ubuntu 22.04

n https://bgp4all.com/pfs/hints/rpki

40

Installing a validator – Routinator
p If using Ubuntu/Debian, then simply use the package

manager, as described:
n https://github.com/NLnetLabs/routinator#quick-start-with-debian-and-

ubuntu-packages

p In summary:
n Get the NLnetLabs public key
n Add the repo to the sources lists
n Install routinator
n Initialise
n Run

41

Routinator 3000 web interface
p User interface of

Routinator accessed
by enabling http
option in the server
configuration
n Listens on port 8323

 /etc/routinator/routinator.conf

42

Installing a validator – FORT
p Easiest is to download one of the packages available

n Described at https://nicmx.github.io/FORT-validator/installation.html
n Example for Ubuntu 20.04:

n Note the automatic creation of the systemd entry
n The configuration file is /etc/fort/config.json – set the listening port here (323 by default)

43

Running FORT
p Other notes:

n Need to refresh the TALs before
starting

n Need to make sure that
/var/lib/fort is owned by the
fort user

n Otherwise FORT will crash on
startup with these errors because
it cannot write there:

44

Installing rpki-client (1)
p rpki-client is packaged from Ubuntu 22.04 onwards but is an old version
p Best built from scratch to get the latest

n Easiest is to build from the Git repository:
p https://github.com/rpki-client/rpki-client-portable

p Note the instructions to get the environment ready:
n You will need automake, autoconf, git, libtool, and libexpat-dev to be installed first – use the

package manager
n LibreSSL tls is also needed – this is part of OpenBSD but the source will compile on Linux
n Get latest LibreSSL:

p https://ftp.openbsd.org/pub/OpenBSD/LibreSSL/
n Unpack and then run:

n Which will build and install the libtls that rpki-client needs
45

./configure --enable-libtls-only
make
make install

Installing rpki-client (2)
p With the environment ready

n Run “./autogen.sh” inside the rpki-client
distribution

n Then run

n And finally build the client by running
46

./configure --with-tal-dir=/etc/rpki \
 --with-base-dir=/var/lib/rpki-client \
 --with-output-dir=/var/db/rpki-client

make

Running rpki-client
p Before we install the client we need to add the specific user and group that the client

will use:

p And then we can run:

n Which will install the client in /usr/local/sbin and the 4 TALs in /etc/rpki, as well as create the cache and
output directories needed

p ARIN TAL requires users to read the disclaimer first:
n https://www.arin.net/resources/manage/rpki/arin.tal

p Now the client can be run (at the command-line, no daemon)

p Client authors recommend running the client hourly by cron
n See https://man.openbsd.org/rpki-client for more information about output options

47

sudo make install

sudo groupadd _rpki-client
sudo useradd –g _rpki-client –s /sbin/nologin –d /nonexistent –c “rpki-client user” _rpki-client

Installing StayRTR
p StayRTR is packaged from Ubuntu

22.04 onwards but is an old version
p Best built from scratch

n Easiest is to build from the Git repository:
p https://github.com/bgp/stayrtr

p You will also need a working Go
environment
n The Go site has more information:

https://go.dev/doc/install

p And then you can build StayRTR:

p Put resultant binary into /usr/local/bin
48

cd stayrtr
make build-stayrtr

Running StayRTR
p StayRTR has lots of options

n The ones we need are:

p We have set up our rpki-client to save the data in
/var/db/rpki-client
n Run the client like this:

49

-bind string
 Bind address (default ":8282")

-cache string
 URL of the cached JSON data (default
"https://console.rpki-client.org/vrps.json")

/usr/local/bin/stayrtr –bind :3323 –cache /var/db/rpki-client/json

RP Cache Deployment
p Network Operator design advice:

n Deploy at least two Validator Caches
n Geographically diverse
n Two different implementations

p For software independence
n Implement on a Linux container so that the container can be

moved between different server clusters as required
n Configure validator to listen on both IPv4 and IPv6

p Configure routers with both IPv4 and IPv6 validator connections
n Securing the validator: Only permit routers running EBGP to

have access to the validators
50

RP Cache Deployment: Open Questions
p Consider two different validator cache implementations

n Gives software independence
n What happens if the different cache implementations contain

different VRPs?
n Scenario 1:

p Cache 1: route X is valid
p Cache 2: route X is invalid

n Scenario 2:
p Cache 1: route X is valid
p Cache 2: route X is NotFound

n Answer: depends on router vendor implementation?!
51

Configure Router to Use Cache: Cisco IOS
p Point router to the local RPKI cache

n Server listens on port 3323
n Cache refreshed every 60 minutes (RFC8210 recommendation)
n Example:

n Once the router’s RPKI table is populated, router indicates
validation state in the BGP table

52

router bgp 64512
 bgp rpki server tcp 10.0.0.3 port 3323 refresh 3600

Cisco IOS status commands
p

n Displays the connection status to the RPKI caches

p
n Shows the VRPs (validated ROA payloads)

p
n Shows the BGP table with status indication next to the prefix

p
n Shows the status ”valid” prefixes in the BGP table

53

show ip bgp rpki servers

show ip bgp rpki table

show ip bgp

show ip bgp | i ^V

Configure Router to Use Cache: JunOS
1. Connect to validation cache:

n (using same parameters as for the Cisco IOS example)
54

routing-options {
 validation {
 group ISP {
 session <ip address validator> {
 refresh-time 600;
 hold-time 3600;
 preference 1;
 port <port>;
 local-address <router loopback>;
 }
 }
 }
}

Configure Router to Use Cache: JunOS
2. Configure validation policies:

55

policy-options {
 policy-statement RPKI-validation {
 term VALID {
 from {
 protocol bgp;
 validation-database valid;
 }
 then {
 validation-state valid;
 next policy;
 }
 }
 term INVALID {
 from {
 protocol bgp;
 validation-database invalid;
 }
 then {
 validation-state invalid;
 next policy;
 }
 }

(continued)...

 term UNKNOWN {
 from {
 protocol bgp;
 validation-database unknown;
 }
 then {
 validation-state unknown;
 next policy;
 }
 }
 }
}

To drop invalid prefixes, replace
the next policy with reject

Configure Router to Use Cache: JunOS
3. Apply policy to eBGP session:

n Note that policy options Upstream-in and LocalAS-out are the
typical inbound and outbound filters needed for an eBGP session56

protocols {
 bgp {
 group EBGP {
 type external;
 local-address 10.0.1.1;
 neighbor 10.1.15.1 {
 description ”ISP Upstream";
 import [RPKI-validation Upstream-in];
 export LocalAS-out;
 peer-as 64511;
 }
 }
 }
}

JunOS status commands
p

n Display the details of the connection to the RPKI caches

p
n Shows the VRPs (validated ROA payloads)

p
n Shows the BGP table with status indication next to the prefix

n Shows the status ”valid” prefixes in the BGP table

57

show validation session detail

show validation replication database

show route protocol bgp

show route protocol bgp validation-state valid

Configure Router to Use Cache: FRrouting
p Point router to the local RPKI cache

n Server listens on port 3323
n Cache refreshed every 60 minutes (RFC8210 recommendation)
n Example:

n Two caches specified for redundancy
58

rpki
 rpki polling_period 3600
 rpki cache 10.0.0.3 3323 preference 1
 rpki cache 10.0.1.2 3323 preference 2
exit

FRrouting status commands
p

n Displays the connection status to the RPKI caches

p
n Shows the VRPs (validated ROA payloads)

p
n Shows the BGP table

p
n Shows the status ”valid” prefixes in the BGP table
n (There are also options for “invalid” and “notfound”)

59

show rpki cache-connection

show rpki prefix-table

show ip bgp

show ip bgp rpki valid

Configure Router to Use Cache: BIRD v2
p Point BIRD to the local

RPKI cache
n Server listens on port 3323
n Cache refreshed every 60

minutes (RFC8210
recommendation)

n Two caches specified for
redundancy

60

roa4 table r4;
roa6 table r6;

protocol rpki validator1 {
 roa4 { table r4; };
 roa6 { table r6; };
 remote 10.0.0.3 port 3323;
 retry 300;
}

protocol rpki validator2 {
 roa4 { table r4; };
 roa6 { table r6; };
 remote 10.0.1.2 port 3323;
 retry 300;
}

BIRD v2 status commands
p

n Displays the connection status to the RPKI cache “validator1”

p
n Shows the IPv4 VRPs (validated ROA payloads)

n Shows the IPv6 VRPs (validated ROA payloads)
p

n Shows the BGP table (but has no validation info)

61

show protocols validator1

show route table r4

show route protocol <name>

show route table r6

Implementation notes
p Cisco IOS/IOS-XE

n Invalid prefixes are dropped by default
p The operator does not need to define a policy based on validation state

n Prefixes originated locally into IBGP are automatically marked as Valid
p There is no check against the cached validation table
p Allows operator to originate non-signed address blocks or other entity address

space inside their own IBGP

p JunOS
n Complete separation between validation table and what happens in BGP

p There has to be a specific policy statement for any action based on validation
state

62

Implementation notes
p Cisco IOS/IOS-XE/IOS-XR

n Every VRP change causes a route-refresh with its BGP neighbours
p Even though VRP change only affects valid/invalid/notfound status

n Big impact for BGP sessions carrying a large or the full BGP table
p Especially for BGP peers with weak control planes!

n Transit providers need to be cautious:
p BGP customer doing ROV on Cisco router will cause significant impact on the

Access Router CPU
n Cisco’s recommended workaround:

p Turn on “Soft Reconfiguration”
p Which has memory implications, and blocks access to the route refresh CLI

n Summary: think carefully about using Cisco routers for Route Origin
Validation

63

Implementation notes
p Other router implementations

n Most modern implementations save the incoming BGP table prior to policy
application (ADJ-RIB-IN)

n Changes in VRPs are applied to this stored BGP table
n Similar behaviour to Cisco’s soft-reconfiguration

p NB: It’s important not to rely on Route Refresh to implement VRP
changes
n More and more frequent changes cause more and more refresh requests to peers,

consuming peer CPU resources – potentially a denial-of-service attack on the peer
n Recommended reading:

p https://www.rfc-editor.org/info/rfc9324

64

Implementation notes
p What happens when router cannot contact any validator

cache?
n Cisco IOS/IOS-XE – empties the VRP table within 5 minutes
n Juniper & Nokia – keeps VRPs until their preconfigured expiry

(default 60 minutes)
n Other vendors – behaviour untested

p Design advice:
n It is important to ensure that EBGP speaking routers can always

remain connected to a validator cache
p Minimum of two independent caches recommended!

65

Check Server

66

route-views>sh ip bgp rpki ser
BGP SOVC neighbor is 128.223.157.83/3323 connected to port 3323
Flags 64, Refresh time is 300, Serial number is 542, Session ID is 11962
InQ has 0 messages, OutQ has 0 messages, formatted msg 3408
Session IO flags 3, Session flags 4008
 Neighbor Statistics:
 Prefixes 669770
 Connection attempts: 1170
 Connection failures: 1074
 Errors sent: 0
 Errors received: 2

Connection state is ESTAB, I/O status: 1, unread input bytes: 0
Connection is ECN Disabled, Mininum incoming TTL 0, Outgoing TTL 255
Local host: 128.223.51.103, Local port: 64209
Foreign host: 128.223.157.83, Foreign port: 3323
Connection tableid (VRF): 0
Maximum output segment queue size: 50

Courtesy of RouteViews

Check Server

67

Courtesy of DrukREN, Bhutan

philip@DREN-THIMPHU-BR> show validation session detail
Session 103.197.176.141, State: up, Session index: 2
 Group: DrukREN, Preference: 100
 Local IPv4 address: 103.197.176.5, Port: 3323
 Refresh time: 600s
 Hold time: 1800s
 Record Life time: 3600s
 Serial (Full Update): 0
 Serial (Incremental Update): 1
 Session flaps: 1
 Session uptime: 00:19:11
 Last PDU received: 00:00:34
 IPv4 prefix count: 94329
 IPv6 prefix count: 15992

RPKI Table (IPv4) – May 2024 – RouteViews

68

396346 BGP sovc network entries using 63415360 bytes of memory
440705 BGP sovc record entries using 14102560 bytes of memory

Network Maxlen Origin-AS Source Neighbor
1.0.0.0/24 24 13335 0 128.223.157.83/3323
1.0.4.0/24 24 38803 0 128.223.157.83/3323
1.0.4.0/22 22 38803 0 128.223.157.83/3323
1.0.5.0/24 24 38803 0 128.223.157.83/3323
1.0.6.0/24 24 38803 0 128.223.157.83/3323
1.0.7.0/24 24 38803 0 128.223.157.83/3323
1.0.64.0/18 18 18144 0 128.223.157.83/3323
1.1.1.0/24 24 13335 0 128.223.157.83/3323
1.1.4.0/22 22 4134 0 128.223.157.83/3323
1.1.16.0/20 20 4134 0 128.223.157.83/3323
1.2.9.0/24 24 4134 0 128.223.157.83/3323
1.2.10.0/24 24 4134 0 128.223.157.83/3323
1.2.11.0/24 24 4134 0 128.223.157.83/3323
1.2.12.0/22 22 4134 0 128.223.157.83/3323
1.3.0.0/16 16 4134 0 128.223.157.83/3323
1.6.0.0/22 24 9583 0 128.223.157.83/3323

RPKI Table (IPv6) – May 2024 – RouteViews

69

222696 BGP sovc network entries using 40976064 bytes of memory
229077 BGP sovc record entries using 7330464 bytes of memory

Network Maxlen Origin-AS Source Neighbor
2001:200::/32 32 2500 0 128.223.157.83/3323
2001:200:136::/48 48 9367 0 128.223.157.83/3323
2001:200:1BA::/48 48 24047 0 128.223.157.83/3323
2001:200:900::/40 40 7660 0 128.223.157.83/3323
2001:200:E00::/40 40 4690 0 128.223.157.83/3323
2001:200:8000::/35 35 4690 0 128.223.157.83/3323
2001:200:C000::/35 35 23634 0 128.223.157.83/3323
2001:200:E000::/35 35 7660 0 128.223.157.83/3323
2001:201::/32 32 0 0 128.223.157.83/3323
2001:202::/31 31 0 0 128.223.157.83/3323
2001:204::/30 30 0 0 128.223.157.83/3323
2001:209::/32 32 0 0 128.223.157.83/3323
2001:20A::/31 31 0 0 128.223.157.83/3323
2001:20C::/30 30 0 0 128.223.157.83/3323
2001:210::/29 29 0 0 128.223.157.83/3323
2001:218::/32 32 2914 0 128.223.157.83/3323

BGP Table (IPv4)

70

RPKI validation codes: V valid, I invalid, N Not found

Network Metric LocPrf Path
V*> 1.0.0.0/24 0 17660 6453 4755 13335 i
V*> 1.0.4.0/22 0 17660 7545 2764 38803 i
...
V*> 1.9.0.0/16 0 17660 6939 4788 i
V*> 1.9.250.0/24 0 17660 2914 1299 6939 6939 4788 i
V*> 1.10.10.0/24 0 17660 2914 64049 55836 9885 142501 148000 i
...
V*> 1.7.228.0/23 0 17660 6453 9583 i
I*> 1.7.228.0/24 0 17660 6453 4755 9583 137130 i
...
V*> 23.252.75.0/24 0 17660 6453 6939 i
V*> 23.252.76.0/24 0 17660 6453 6939 i
I*> 23.252.77.0/24 0 17660 6453 3257 i
I*> 23.252.78.0/24 0 17660 6453 3257 i
V*> 23.252.79.0/24 0 17660 6453 6939 i
...

Courtesy of RouteViews

BGP Table (IPv6)

71

RPKI validation codes: V valid, I invalid, N Not found

Network Metric LocPrf Path
N*> 2001::/32 0 17660 2914 6939 i
N*> 2001:4:112::/48 0 17660 36236 112 ii
V*> 2001:200::/32 0 17660 2914 2500 2500 i
V*> 2001:200:900::/40 0 17660 2914 17676 2500 2500 2500 7660 i
V*> 2001:200:e00::/40 0 17660 2914 17676 2500 2500 2500 4690 i
V*> 2001:200:c000::/35 0 17660 6939 23634 23634 ii
...
V*> 2001:5a0::/32 0 17660 6453 i
I*> 2001:5a0:3f06::/48 0 17660 6453 i
V*> 2001:5a0:4402::/48 0 17660 2914 20940 i
I*> 2001:5a0:4604::/48 0 17660 6453 i
I*> 2001:5a0:4e01::/48 0 17660 6453 i
I*> 2001:5a0:9000::/36 0 17660 6453 i
V*> 2001:5a0:9000::/38 0 17660 6453 i
V*> 2001:5a0:9001::/48 0 17660 6453 7029 i
...

Courtesy of RouteViews

RPKI BGP State: Valid

72

route-views>sh bgp ipv6 unicast 2001:240::/32
BGP routing table entry for 2001:240::/32, version 95472891
Paths: (13 available, best #10, table default)
 Not advertised to any peer
 Refresh Epoch 1
 20912 6939 2497
 2001:40D0::1E from 2001:40D0::1E (77.39.192.1)
 Origin IGP, localpref 100, valid, external
 path 7F16801AE960 RPKI State valid
 rx pathid: 0, tx pathid: 0
 Refresh Epoch 1

RPKI BGP State: Invalid

73

route-views>sh bgp ipv6 unicast 2001:5a0:3f06::/48
BGP routing table entry for 2001:5A0:3F06::/48, version 98192653
Paths: (1 available, best #1, table default)
 Not advertised to any peer
 Refresh Epoch 1
 20912 49367 6762 6453
 2001:40D0::1E from 2001:40D0::1E (77.39.192.1)
 Origin IGP, localpref 100, valid, external, best
 path 7F1561494A90 RPKI State invalid
 rx pathid: 0, tx pathid: 0x0

RPKI BGP State: Not Found

74

route-views>sh bgp ipv6 unicast 2001::/32
BGP routing table entry for 2001::/32, version 95354292
Paths: (11 available, best #6, table default)
 Not advertised to any peer
 Refresh Epoch 1
 20912 6939
 2001:40D0::1E from 2001:40D0::1E (77.39.192.1)
 Origin IGP, localpref 100, valid, external
 path 7F16801B0F60 RPKI State not found
 rx pathid: 0, tx pathid: 0

Agenda
p Background – Origin Validation and RPKI
p Route Origin Authorisation
p Route Origin Validation
p Validator Caches
p Deploying RPKI
p RPKI Deployment Status
p What’s Next?

75

Deploying RPKI

Deploying and using RPKI

76

Using RPKI
p Network operators can make decisions based on RPKI

state:
n Invalid – discard the prefix – please do this now!
n NotFound – let it through (maybe low local preference)
n Valid – let it through (high local preference)

p Some operators even considering making “Not Found” a
discard event
n But then Internet IPv4 BGP table would shrink to about 450000

prefixes and the IPv6 BGP table would shrink to about 95000
prefixes!

77

Using RPKI
p Invalid means discarding the prefix

n Which means it does not go into the BGP RIB or the FIB
n And that means routing falls back to the covering aggregate

p (Subnet might be a hijack, so the covering aggregate will be the correct
path)

n In the absence of a covering aggregate, the default route will be
used

p Running ROV in an AS with a default route?
n Invalids dropped, so it is likely the default will be used instead
n Either move into default free zone (full tables), otherwise

implementing ROV is more an academic/educational exercise
78

Using RPKI
p Should invalid routes be routed to the Null/Discard

interface rather than just dropped?
n If this is done, then access to that route is totally blocked, even

if the covering aggregate offers the legitimate path to the
destination

p Which means the hijack is inadvertently partially successful because
access to the legitimate destination is prevented

n Answer: NO, please don’t do this

79

Deploying RPKI within an AS
p For fully supported Route Origin Validation across the

network:
n All EBGP speaking routers need talk with a validator

p Supporting ROV means dropping invalids as they arrive in the network
p EBGP speaking routers are part of the operator IBGP mesh

n IBGP speaking routers do not need to talk with a validator
p Only valid and NotFound prefixes will be distributed from the EBGP speaking

routers
p The validation table is not distributed from router to router

p Remember:
n Cisco IOS/IOS-XE drops invalids by default – to allow invalids to be

distributed by IBGP, use the per address-family command:
80bgp bestpath prefix-validate allow-invalid

Propagating validation state
p RFC8097 describes the propagation of validation state

between iBGP speakers
n Defines an opaque extended BGP community

n These extended communities can be used in IBGP to allow distribution of
validation state along with the prefix if desired

n On Cisco IOS/IOS-XE:

n For JunOS, policy needs to be explicitly configured 81

Extended Community Meaning

0x4300:0:0 Valid

0x4300:0:1 NotFound

0x4300:0:2 Invalid

neighbor x.x.x.x announce rpki state

Propagating validation state
p There are two important caveats when propagating

validation state:
n Interoperability – is the defined opaque extended community

supported on all vendor equipment in a multi-vendor network?
p Until recently JunOS would not allow the required opaque extended

communities to be configured at the command line

n Cisco IOS/IOS-XE behaviour:
p Adds a step to the best path selection algorithm: checks validation state

(valid preferred over not found) before checking local preference
§ This cannot be turned off 🤯🤬

82

JunOS: opaque extended community
p Supported only in more recent JunOS releases

n Fixed from 17.4R3, 18.2R3, 18.4R2…

83

policy-options {
 community RPKI-VALID members 0x4300:0:0;
 community RPKI-UNKNOWN members 0x4300:0:1;
 community RPKI-INVALID members 0x4300:0:2;
}

JunOS: opaque extended community
p And we can now set

policy to detect these
communities being
sent from Cisco
IOS/IOS-XE routers
n Under “policy-options”:

84

policy-statement PEER-in {
 term VALID {
 from community RPKI-VALID;
 then {
 validation-state valid;
 next policy;
 }
 }
 term INVALID {
 from community RPKI-INVALID;
 then {
 validation-state invalid;
 next policy;
 }
 }
 term UNKNOWN {
 from community RPKI-UNKNOWN;
 then {
 validation-state unknown;
 next policy;
 }
 }
}

Propagating validation state: Cisco IOS
p Cisco IOS/IOS-XE behaviour – example:

n Prefix learned via two paths via two separate EBGP speaking routers
n Prefix and validation state distributed by IBGP to core router (route

reflector):

n One EBGP speaking router talks with validator
n The other EBGP speaking router does not (due to error or design)
n Core router best path selection prefers valid path over not found even if

the latter has higher local preference 85

Network Next Hop Metric LocPrf Weight Path
V*>i 61.45.249.0/24 100.68.1.1 0 50 0 121 20 135534 i
N* i 100.68.1.3 0 200 0 20 135534 i
V*>i 61.45.250.0/24 100.68.1.1 0 50 0 121 30 135535 i
N* i 100.68.1.3 0 150 0 30 135535 i
V*>i 61.45.251.0/24 100.68.1.1 0 50 0 121 122 40 135536 i
N* i 100.68.1.3 0 150 0 40 135536 i

Propagating validation state: Cisco IOS
p Looking at the path detail:

86

BGP routing table entry for 61.45.249.0/24, version 32
BGP Bestpath: deterministic-med
Paths: (2 available, best #1, table default)
 Not advertised to any peer
 Refresh Epoch 1
 121 20 135534, (Received from a RR-client)
 100.68.1.1 (metric 2) from 100.68.1.1 (100.68.1.1)
 Origin IGP, metric 0, localpref 50, valid, internal, best
 Extended Community: 0x4300:0:0
 path 67A585D0 RPKI State valid
 Refresh Epoch 1
 20 135534, (Received from a RR-client)
 100.68.1.3 (metric 2) from 100.68.1.3 (100.68.1.3)
 Origin IGP, metric 0, localpref 200, valid, internal
 Community: 10:1100
 Extended Community: 0x4300:0:1
 path 67A58918 RPKI State not found

Note best path

Propagating validation state
p Consider carefully if this is desired
p Current standard practice is to:

n EBGP speaking routers have session with two diverse/redundant
validators

n Check validation state on EBGP speaking routers
n Drop invalids on EBGP speaking routers
n Distribute remaining prefixes by IBGP
n Avoid propagating validation state (at least in Cisco IOS)
 -or-
n Make sure that EBGP speaking routers never lose their

connectivity to validators
87

RPKI Summary
p All AS operators must consider deploying:

n Signing ROAs
n Dropping Invalids (ROV)

p An important step to securing the routing system
p Doesn’t secure the path, but that’s the next important

hurdle to cross
p With origin validation, the opportunities for malicious or

accidental mis-origination are considerably reduced
p FAQ:

n https://nlnetlabs.nl/projects/rpki/faq/

88

Agenda
p Background – Origin Validation and RPKI
p Route Origin Authorisation
p Route Origin Validation
p Validator Caches
p Deploying RPKI
p RPKI Deployment Status
p What’s Next?

89

RPKI Deployment Status

90

RPKI Deployment Status
p NIST keeps track of deployment status for research

purposes:
n https://rpki-monitor.antd.nist.gov/

p IIJ Labs RPKI statistics:
n https://ihr.iijlab.net/ihr/en-us/rov

p RIPE NCC statistics:
n https://certification-stats.ripe.net/

p NSRC ROA status:
n Routinator Validator running at NSRC
n https://routinator.nsrc.org/

91

Number of ROAs

92

https://certification-stats.ripe.net/

IPv4 Address Space in ROAs (/24s)

93

https://certification-stats.ripe.net/

IPv6 Address Space in ROAs (/48s)

94

https://certification-stats.ripe.net/

IIJ Labs RPKI
Statistics

95

https://ihr.iijlab.net/ihr/

IIJ Labs RPKI
Statistics

96

https://ihr.iijlab.net/ihr/

IIJ Labs RPKI
Statistics

97

https://ihr.iijlab.net/ihr/

Major Operators deploying RPKI and ROV
p Arelion

98

aut-num: AS1299
org: ORG-TCA32-RIPE
as-name: TWELVE99
descr: Arelion, f/k/a Telia Carrier
<snip>
remarks: AS1299 is matching RPKI validation state and reject
remarks: invalid prefixes from peers and customers.
remarks:
remarks: Our looking-glass at https://lg.twelve99.net/ marks
remarks: validation state for all prefixes.
remarks:
remarks: Please review your registered ROAs to reduce number
remarks: of invalid prefixes.

Major Operators deploying RPKI and ROV
p More and more operators

are deploying RPKI and
ROV

p Not just transit providers!
p But also:

n Content providers
n IXPs
n R&E networks
n Access providers

p Arelion
p NTT
p Lumen
p HE
p GTT
p Workonline
p SEACOM
p Cloudflare
p AMS-IX
p LINX
p DE-CIX

p Terrehost
p Vocus
p Telstra
p REANNZ
p Cogent
p GR-IX
p Swisscom
p Netflix
p UAE-IX
p …

99

Agenda
p Background – Origin Validation and RPKI
p Route Origin Authorisation
p Route Origin Validation
p Validator Caches
p Deploying RPKI
p RPKI Deployment Status
p What’s Next?

100

What’s next?

ASPA, MANRS,…

101

Autonomous System Provider Authorisation
p ASPA is the next step after signing ROAs and implementing

ROV
n ASPA is a digitally signed object that binds, for a selected address

family, a Set of Provider AS numbers to a Customer AS number (in
terms of BGP announcements)

n The object is signed by the holder of the Customer AS
p The AS holder is signing who their adjacent ASes are

n The ASPA record attests that the Customer AS has authorised the Set of
Provider ASes to propagate the customer’s IPv4/IPv6 announcements
onwards

n https://datatracker.ietf.org/doc/draft-ietf-sidrops-aspa-verification/

102

ASPA implementation
p Once the customer has signed their ASPA attestation:

n The neighbour AS providers (relying party) need to have access to the
complete set of cryptographically valid ASPAs

n The relying party retrieves all cryptographically valid ASPAs for the
customer AS

p If none exist, then the outcome is “Unknown”
p If the relying party’s AS is included, the outcome is “Valid”
p If the relying party’s AS is NOT included, the outcome is “Invalid”

103

ASPA development
p Discussion ongoing in IETF SIDR Ops Working Group

n Recent (last minute) change: removal of address family support
p Which means that the relationship between two ASes must be the same for IPv4 and

IPv6 (congruent)
p Operationally this is not the case – in reality, peering policies for IPv4 are often

different from those for IPv6
p Could leave ASes without identical IPv4 and IPv6 peering policies open to the abuse

ASPA was meant to help prevent
p But much easier to implement!

n Working documents:
p https://datatracker.ietf.org/doc/draft-ietf-sidrops-8210bis-10
p https://datatracker.ietf.org/doc/draft-ietf-sidrops-aspa-profile
p https://datatracker.ietf.org/doc/draft-ietf-sidrops-aspa-verification

104

ASPA development
p Router OS support is still in the early stages

n NIST BGP-SRx and OpenBGPD support ASPA (May 2023)
n BIRD being worked on
n FRRouting & mainstream router vendors unknown

p Validator implementations are still in the early stages:
n RPKI-client & StayRTR supports ASPA (May 2023)
n Routinator support due soon
n RPSTIR2 testing ASPA

p RIR support
n Unknown – all RIRs will need to allow address holders to create ASPA

objects

105

Routing Security
p Implement the recommendations in

https://www.manrs.org
1. Prevent propagation of incorrect routing information

Ø Filter BGP peers, in & out!
2. Prevent traffic with spoofed source addresses

Ø BCP38 – Unicast Reverse Path Forwarding

3. Facilitate communication between network operators
Ø NOC to NOC Communication
Ø Up-to-date details in Route and AS Objects, and PeeringDB

4. Facilitate validation of routing information
Ø Route Origin Authorisation using RPKI

106

Summary
p Deploy RPKI

n It is in the Internet’s best interest

p With wide deployment of RPKI it becomes possible to
only allow validated prefix announcements into the
Internet Routing System
n Prevents mis-originations
n Prevents prefix hijack
n Makes the Internet infrastructure more reliable and more stable
n Allows the next step: AS-PATH validation

BGP Origin Validation

ISP Workshops

108

