Acknowledgements

- This material originated from the Cisco ISP/IXP Workshop Programme developed by Philip Smith & Barry Greene

- Use of these materials is encouraged as long as the source is fully acknowledged and this notice remains in place

- Bug fixes and improvements are welcomed
 - Please email workshop (at) bgp4all.com

Philip Smith
NSRC has produced a library of BGP presentations (including this one), recorded on video, for the whole community to use.

https://learn.nsrc.org/bgp
Unicast Reverse Path Forwarding

- uRPF is a technique where the router can discard packets with invalid/fake/incorrect source addresses by a simple check against the Forwarding Table (FIB)
 - More efficient than implementing ingress packet filters
- Part of BCP 38
- uRPF is a very effective tool to assist with defeating Denial of Service attacks, at source
 - Implemented by network operators on access devices, where end-users and end-devices connect to their network
There are two modes for uRPF:

- **Strict Mode**
 - Source address must be reachable via the source (incoming) interface
 - Typically used in Access Networks

- **Loose Mode**
 - Source address must be in the FIB
 - Typically used to drop non-routed address space
 - Used when asymmetric traffic flows are present (for example, when multihoming)
 - Used to implement source-based Remotely Triggered Blackhole Filtering (S/RTBH)
uRPF: Strict Mode

- Router compares source address of incoming packet with FIB entry
 - If FIB entry interface matches incoming interface, the packet is forwarded
 - If FIB entry interface does not match incoming interface, the packet is dropped
uRPF: Strict Mode

- Router compares source address of incoming packet with FIB entry.
 - If FIB entry interface matches incoming interface, the packet is forwarded.
 - If FIB entry interface does not match incoming interface, the packet is dropped.
uRPF: IOS Configuration

- Configuring **Strict** Mode uRPF:

```diff
interface FastEthernet 0/1
 ip address 192.168.0.254 255.255.255.0
 ip verify unicast source reachable-via rx allow-self-ping
 ipv6 address 2001:DB8:0:1::FF/64
 ipv6 verify unicast source reachable-via rx
!
 ip route 192.168.1.0 255.255.255.0 192.168.0.1
 ipv6 route 2001:DB8:1:1::/64 2001:DB8:0:1::1
!
```

- This shows an ethernet LAN with uRPF configured
 - For IPv4 and IPv6
 - For both the direct LAN, **and**
 - For another network connected to the LAN
uRPF: IOS Configuration

- The router’s IPv4 and IPv6 FIBs would look something like this:

```plaintext
router# sh ip fib
... 192.168.0.0/24      attached        FastEthernet0/1
192.168.1.0/24  192.168.0.1        FastEthernet0/1
...
router# sh ipv6 fib
... 2001:DB8:0:1::/64    attached to FastEthernet0/1
2001:DB8:1:1::/64      nexthop FE80::6EB2:AEFF:FE6F:A508 FastEthernet0/1
...```
uRPF: Loose Mode

- Router compares source address of incoming packet with FIB entry
  - If FIB entry exists and is a non-Null interface, the packet is forwarded
  - If FIB entry does NOT exist, or the interface is Null, the packet is dropped
uRPF: Loose Mode

- Router compares source address of incoming packet with FIB entry
  - If FIB entry exists and is a non-Null interface, the packet is forwarded
  - If FIB entry does NOT exist, or the interface is Null, the packet is dropped

FIB:
172.16.1.0/24    gig0/0
192.168.2.0/24   null0
uRPF: IOS Configuration

Configuring **Loose** Mode uRPF on Cisco IOS:

```
interface FastEthernet 0/1
 ip address 192.168.0.254 255.255.255.0
 ip verify unicast source reachable-via any allow-self-ping
 ipv6 address 2001:DB8:0:1::FF/64
 ipv6 verify unicast source reachable-via any
!
 ip route 192.168.1.0 255.255.255.0 192.168.0.1
 ipv6 route 2001:DB8:1:1::/64 2001:DB8:0:1::1
!
```

- The router will check the entire FIB for the destination
Cisco IOS allows various options:

- **reachable-via** allows either
  - strict mode using the `rx` keyword  
  - loose mode using the `any` keyword
- **allow-self-ping** enables the operator to use ping on the local interface to check local link connectivity
  - Without **allow-self-ping** it would not be possible to ping the local interface address from the router
- In loose mode, the **allow-default** option allows a successful match against the default route
- Access-lists can be used to cover selective uRPF checks
Deployment advice

- Implement uRPF on **all** single-homed customer facing interfaces
  - Cheaper (CPU & RAM) than implementing packet filters
- Make uRPF a default setting in all access router templates

- In the case of Multihomed connections, the deployment of strict uRPF needs very careful planning
  - Asymmetric traffic flows are common
  - Strict mode needs the BGP Weight feature (at minimum)
  - Loose mode ensures uRPF can be implemented
Summary

- uRPF has been available in major vendor implementations since the late 1990s
- More documentation contained in BCP38
- Implementation of uRPF is an essential technique for assisting with defeating Denial of Service attacks
- One of the principles in the MANRS initiative
  - [https://www.manrs.org/manrs](https://www.manrs.org/manrs)
Unicast Reverse Path Forwarding

ISP Workshops