IPv6 Module 6 - iBGP and Basic eBGP

Objective: Using IPv6, simulate four different interconnected ISP backbones using a combination of IS-IS, internal BGP, and external BGP.

Prerequisites: Module 1

<u>Topology</u>:

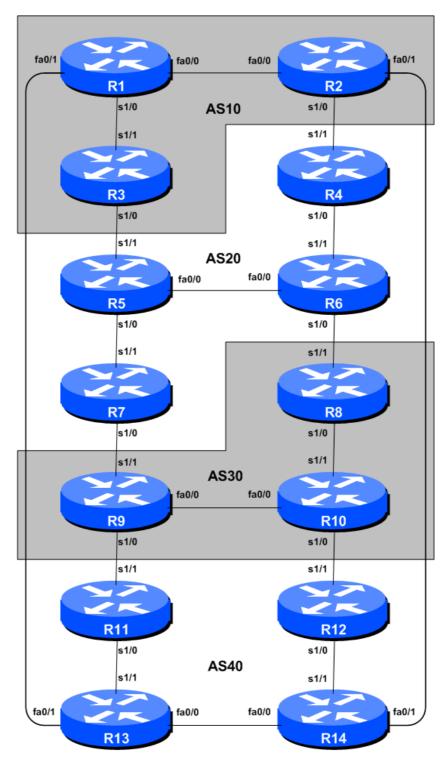


Figure 1 - BGP AS Numbers

Lab Notes

The purpose of this module is to introduce the student to external BGP (eBGP). This is the relationship between different autonomous systems in an "Internet". The classroom is split into four distinct networks, and the teams belonging to each network work together as a typical ISP. Each AS has two links to its neighbouring ASes, and this feature will used throughout a significant portion of this workshop.

The connectivity shown in the diagrams represents links between AS's. It is assumed that all the routers within an AS are physically connected to each other as per Figure 1.

Note: this IPv6 module is intended to be completed after the IPv4 version of this module.

Lab Exercises

1. Connect routers as shown in Figure 1. All routers within an AS must be physically connected and reachable. The relationship between the ASes is as drawn in Figure 2 and gives a view which can be related to the "real world".

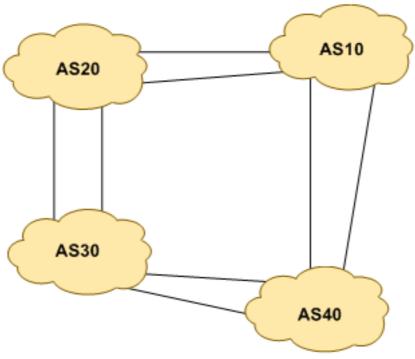


Figure 2 - AS relationship

- **2. Remove any IPv6 addressing.** Before we proceed to even think about configuring the routing protocols to match the above AS layout, we need to tidy up the addressing from previous modules. In this step we remove any remaining IPv6 addresses from all physical interfaces, and the loopback interface. This effectively takes the lab back to the configuration it had prior to step 10 in Module 1. Don't forget to remove **all** the IPv6 addressing.
- **3. IPv6 Addressing.** As we did in step 5 of Module 1, we need to come up with a sensible and scalable addressing plan for each AS in this network. Each AS gets their own address block, a /32

(typical minimum allocation for a starter ISP). This address block should be assigned to links and loopbacks on the routers making up each ASN. The allocations are as follows:

AS10	2001:db8::/32	AS30	2001:dba::/32
AS20	2001:db9::/32	AS40	2001:dbb::/32

Again we need to divide up each address block so that we have customer address space, network infrastructure address space, and some space for loopbacks. Figure 3 below reminds how this could be done:

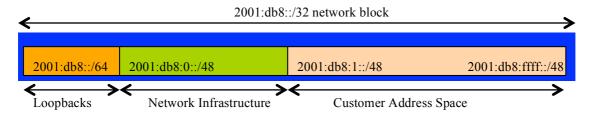


Figure 3 – Dividing allocated block of /20 into Customer, Infrastructure and Loopbacks

Please refer to the accompanying hand out for the address plan which should be used for this module onwards – it is entitled "Addressing Plan – Modules 6 to 9". As with Module 1, configure the addresses on each interface which will be used for this module, and check basic IP connectivity with your immediately adjacent neighbours.

4. Router Loopback Interface Addressing. As the minimum subnet size possible for IPv6 is a /64, we will assign the first /64 out of our /48 infrastructure block to be used for loopbacks even though each AS has either 3 or 4 routers in it. The loopback address assignments which will be used for this module are below:

Router1	2001:db8::1	Router8	2001:dba::1
Router2	2001:db8::2	Router9	2001:dba::2
Router3	2001:db8::3	Router10	2001:dba::3
Router4	2001:db9::1	Router11	2001:dbb::1
Router5	2001:db9::2	Router12	2001:dbb::2
Router6	2001:db9::3	Router13	2001:dbb::3
Router7	2001:db9::4	Router14	2001:dbb::4

5. Configure IS-IS for IPv6 on the routers within each AS. Check that the IS-IS configuration is in place and is functioning normally. Remember that IS-IS should be configured on internal interfaces **only**. You do not want to set up adjacencies with devices outside your AS. Make sure that there are no *ipv6 router isis* commands on external interfaces. A side effect of this is that external link addresses will not appear in the IGP (see the next section discussion iBGP deployment).

Don't forget to enable multi-topology IS-IS when enabling IS-IS to support IPv6. This will enable you to deploy IS-IS for IPv6 across your ASN without breaking the IPv4 connectivity. (If your routers do not support multi-topology IS-IS, you will need to coordinate activation of the IPv6 address family on a per-interface basis with adjacent routers.) Also remember to set the over-load bit as we did in Module 1.

As an example, Router Team 1, with two interfaces in AS 10 would have the following:

```
Router1 (config) # router isis as10
Router1 (config-router) # net 49.0001.0100.0001.5224.00
Router1 (config-router) # is-type level-2-only
Router1 (config-router) # metric-style wide level-2
Router1 (config-router) # log-adjacency-changes
Router1 (config-router) # metric 100000
!
Router1 (config-router) # address-family ipv6
Router1 (config-router-af) # multi-topology
Router1 (config-router-af) # set-overload-bit on-startup wait-for-bgp
!
Router1 (config) # interface fastethernet 0/0
Router1 (config-if) # ipv6 router isis as10
Router1 (config-if) # isis ipv6 metric 2 level-2
!
Router1 (config-if) # interface serial 1/0
Router1 (config-if) # ipv6 router isis as10
Router1 (config-if) # isis ipv6 metric 20 level-2
```

Remember that the interfaces on which you do not want to run IS-IS need to be marked as *passive*. For IS-IS, marking an interface as *passive* means that CLNS adjacencies are not solicited **and** the IP subnet used on the interface is inserted into IS-IS. Note that you cannot mark interfaces as passive until you have IS-IS assigned to at least one physical interface on the router.

```
Router1 (config) # router isis as10
Router1 (config-router) # passive-interface Loopback0
```

Notes:

- IS-IS by default will only set up adjacencies and announce the prefixes of the interfaces which are activated by the "ipv6 router isis" command. This is different behaviour from OSPF which will attempt to set up adjacencies on interfaces covered by the network statement (and hence require the use of passive and no passive to control its behaviour).
- Different ISPs use different NET addressing schemes. But it is common to use the router loopback IP address as the system ID in either hex or decimal format. In this module all routers in an AS are level-2 in and one area (49.0001) only.
- **6. IS-IS on Point-to-Point Ethernet Links.** Confirm that IS-IS is operating in point-to-point mode on point-to-point Ethernet links, for example:

```
Router1 (config) # interface fastethernet 0/0
Router1 (config-interface) # isis network point-to-point
```

The link is now treated like a point-to-point serial connection.

- **7. Ping Test.** Check the routes via IS-IS. Make sure you can see all the networks within your AS, and see no networks from other ASs. Ping all loopback interfaces within your AS Set. Use the "show clns neighbor" and "show ip route" commands.
- **8.** Save the configuration. Don't forget to save the configuration to NVRAM!

Checkpoint #1: call the lab assistant to verify the connectivity.

- **9.** Turning on neighbour authentication for IS-IS. Confirm that the neighbour authentication is still functional for IS-IS. It should be independent of the IPv6 protocol, so the adjacencies will still be active.
- **10. Configure iBGP peering between routers within an AS.** Use the loopback address for the iBGP peerings. Also, configure the *network* command to add the address block assigned to each Router Team for advertisement in BGP.

```
router bgp 10
no bgp default ipv4-unicast
bgp log-neighbor-changes
address-family ipv6
no synchronization
network 2001:db8::/32
neighbor 2001:db8::2 remote-as 10
neighbor 2001:db8::2 update-source loopback 0
neighbor 2001:db8::2 next-hop-self
neighbor 2001:db8::2 description iBGP Link to R2
neighbor 2001:db8::3 remote-as 10
neighbor 2001:db8::3 update-source loopback 0
neighbor 2001:db8::3 next-hop-self
neighbor 2001:db8::3 next-hop-self
neighbor 2001:db8::3 Next-hop-self
neighbor 2001:db8::3 Next-hop-self
```

- **11. Test internal BGP connectivity.** Use the BGP Show commands to ensure you are receiving everyone's routes from within your AS.
- **12. Configure passwords on the iBGP sessions.** Passwords should now be configured on the iBGP sessions. Review the presentation why this is necessary. Agree amongst all your team members in your AS what the password should be on the iBGP session, and then apply it to all the iBGP peerings on your router. For example, on Router2's peering with Router3, with "cisco" used as the password:

```
router bgp 10
address-family ipv6
neighbor 2001:db8::3 password cisco
```

IOS currently resets the iBGP session between you and your neighbouring router whenever an MD5 password is added. So when passwords are added to BGP sessions on live operational networks, this work should be done during a maintenance period when customers know to expect disruptions to service. In the workshop lab, it doesn't matter so much. (Future IOS releases will avoid having this rather serious service disruption.)

Watch the router logs – with the BGP session neighbour changes being logged, any mismatch in the password should be easy to spot.

<u>Checkpoint #2:</u> Call the lab assistant and demonstrate the password as set on the iBGP session. Once confirmed by the lab assistant, move on to the next steps.

13. Configure eBGP peering. Use Figure 1 to determine the links between the AS's. Addressing for eBGP links between 2 AS's will use the point-to-point interface addresses, *NOT* the loopback

addresses (review the BGP presentation if you don't understand why). So, for Router1's peering with Router13, the configuration might look like:

```
router bgp 10
address-family ipv6
neighbor 2001:db8:0:4::1 remote-as 40
neighbor 2001:db8:0:4::1 description eBGP to Router13
```

Use the BGP Show commands to ensure you are sending and receiving the BGP advertisements from your eBGP neighbours.

- **Q.** Why can't the loopback interfaces be used for the eBGP peerings?
- **A.** The IP address of a router's loopback interface is not known to external BGP peers, so the external peers will have no way of knowing how to contact each other to establish the peering.
- **Q.** Which BGP show command allows you to see the state of the BGP connection to your peer?
- **A.** Try show bgp ipv6 unicast neighbor x.x.x.x this will give detailed information about the state of the peer. There are subcommands of this one, giving more information about the peering.
- **Q.** Which BGP Show command will allow you to see exactly which networks you are advertising and receiving from your eBGP peers?
- **A.** Try show bgp ipv6 unicast neighbor x.x.x.x route this will show which routes you are receiving from your peer. Likewise, replacing route with advertised-routes will list the networks which are being announced to your peer. (Note that in general ISP operational practice, there are caveats here if you apply route-maps and some BGP policies, these will not be processed by the advertised-routes command. Use the advertised-routes subcommand with due caution.)
- **14. Configure passwords on the eBGP session.** Passwords should now be configured on the eBGP sessions between your and your neighbouring ASes. Agree between you and your neighbouring AS what the password should be on the eBGP session, and then apply it to the eBGP peering. For example, on Router2's peering with Router4, with "cisco" used as the password:

```
router bgp 10
address-family ipv6
neighbor 2001:db8:0:3::2 password cisco
```

As previously for the iBGP session, watch the logs for password mismatches, or missing passwords. As with the iBGP sessions previously, you will find that the router will reset the eBGP session as soon as the password is applied.

Note: Wherever a BGP (either iBGP or eBGP) session is configured from now on in the workshop, all Router Teams MUST use passwords on these BGP sessions.

<u>Checkpoint #3:</u> Call the lab assistant and demonstrate the password as set on the eBGP session. Once confirmed by the lab assistant, move on to the next steps.

15. Adding a "customer" route into BGP. As we did in Module 1, we are now going to add a "customer" route into BGP on each router. We don't have any "customers" as such connected to our routers in the lab, so we are going to simulate the connectivity by simply using a Nullo interface. The "customer" address space that each router team will introduce into the iBGP is listed below – again we will each use a /48, for simplicity's sake.

```
2001:db8:1::/48
R1
                                            2001:dba:1::/48
                                      R8
     2001:db8:2::/48
                                      R9
                                            2001:dba:2::/48
R2
                                            2001:dba:3::/48
R3
     2001:db8:3::/48
                                      R10
     2001:db9:1::/48
                                            2001:dbb:1::/48
R4
                                      R11
     2001:db9:2::/48
                                            2001:dbb:2::/48
R5
                                      R12
                                            2001:dbb:3::/48
R6
     2001:db9:3::/48
                                      R13
R7
     2001:db9:4::/48
                                      R14
                                            2001:dbb:4::/48
```

Each team should now set up a static route pointing to the **NULL0** interface for the /48 that they are to originate. Once the static is set up, the team should then add an entry into the BGP table. Here is an example for Router8:

```
ipv6 route 2001:dba:1::/48 Null0
!
router bgp 30
address-family ipv6
network 2001:dba:1::/48
```

16. Check the BGP table. Are there routes seen via *show bgp ipv6*? If not, why not? Once every team in the class has done their configuration, each team should see the aggregate from each AS as well as the fourteen /48s introduced in the previous step. If this is not happening, work with your neighbours to fix the problem.

<u>Checkpoint #4:</u> Call the lab assistant to verify the connectivity. Use commands such as "show ipv6 route sum", "show bgp ipv6 unicast sum", "show bgp ipv6 unicast", "show ipv6 route", and "show bgp ipv6 unicast neigh x.x.x.x route | advertise". There should be 4 aggregate prefixes (one for each ISP) and the 14 customer /48's in the BGP table.

- 17. The Importance of Aggregation. Each AS was allocated a /32 address block. It is expected by all Internet operators that any address space an ISP is using is aggregated as much as possible before it is announced to the rest of the Internet. Subdividing the address space inside an AS is perfectly acceptable and obviously very common (as we have done here) but most operators consider leaking this subdivided address space out to the Internet at large antisocial and unfriendly.
 - **Q.** How do you automatically aggregate via BGP smaller address blocks from within your network to a larger address block outside your network? *Hint:* Review the BGP documentation.
 - **A.** The "aggregate-address" command is quite often used to achieve this.

We are not doing any filtering or limitation of the announcements of the "customer" address blocks we have introduced into each ASN. This will be one of the goals of the next modules in the workshop.

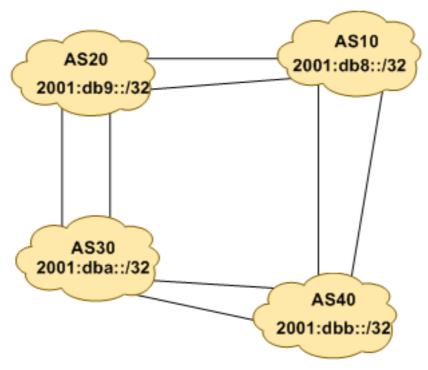


Figure 4 - Aggregates for each ASN

Review Questions

- 1. How many *origin types* exist in BGP?
- 2. List the origin types. Hint: Review the BGP presentations.
- **3.** How are they used?
- 4. Why are passwords necessary on both iBGP and eBGP sessions? What do they protect against?
- **5.** Why is aggregation important for the Internet?