Transitioning to BGP

ISP Workshops

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

Last updated 28th September 2020

Acknowledgements

- This material originated from the Cisco ISP/IXP Workshop Programme developed by Philip Smith & Barry Greene
- Use of these materials is encouraged as long as the source is fully acknowledged and this notice remains in place
- Bug fixes and improvements are welcomed
 - Please email workshop (at) bgp4all.com

Philip Smith

Scaling the network

How to get out of carrying all prefixes in IGP

Why use BGP rather than IGP?

IGP has Limitations:

- The more routing information in the network
 - Periodic updates/flooding "overload"
 - Long convergence times
 - Affects the core first
- Policy definition
 - Not easy to do

Preparing the Network

- We want to deploy BGP now...
- Because BGP will be used an ASN is required
- If not multihoming, a private ASN is sufficient
- If multihoming to different ISPs is intended in the near future, a public ASN should be obtained:
 - Either go to upstream ISP who is a registry member

or

Apply to the RIR yourself for a one off assignment

or

Ask an ISP who is a registry member

or

Join the RIR and get your own IP address allocation too (this option strongly recommended)!

Preparing the Network

■ Will look at two examples of BGP deployment:

- Example One: network uses only static routes
- Example Two: network is currently running an IGP

Preparing the Network Example One

The network is not running any BGP at the moment
 single statically routed connection to upstream ISP

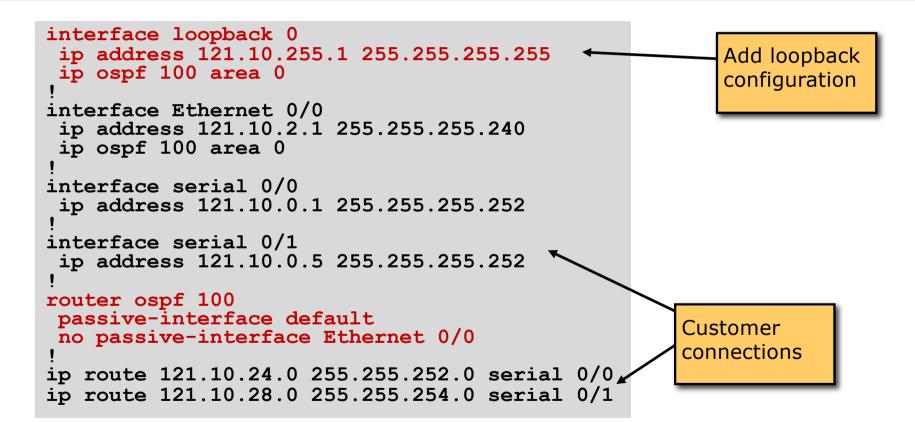
- The network is not running any IGP at all
 - Static default and routes through the network to do "routing"

Preparing the Network First Step: IGP

■ Decide on an IGP: OSPF or IS-IS ☺

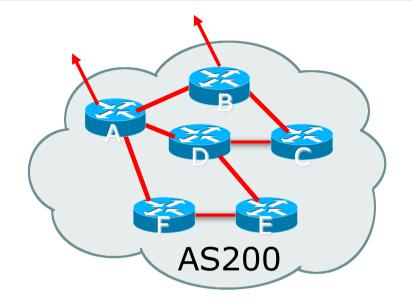
- See the ISIS vs OSPF presentation
- Assign loopback interfaces and /32 address to each router which will run the IGP
 - Loopback is used for OSPF and BGP router id anchor
 - Used for IBGP and route origination
- Deploy IGP (e.g. OSPF)
 - IGP can be deployed with NO IMPACT on the existing static routing
 - e.g. OSPF distance might be 110; static distance is 1
 - Smallest distance wins

Preparing the Network IGP (cont)

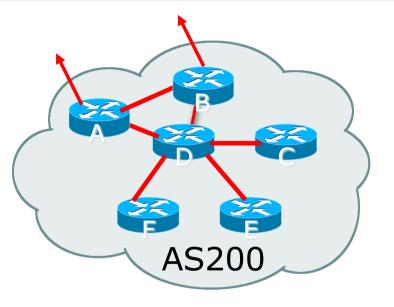

- Be prudent deploying IGP keep the Link State Database Lean!
 - Router loopbacks go in IGP
 - WAN point to point links go in IGP
 - (In fact, any link where IGP dynamic routing will be run should go into IGP)
 - Summarise on area/level boundaries (if possible) i.e. think about your IGP address plan

Preparing the Network IGP (cont)

Routes which don't go into the IGP include:


- Dynamic assignment pools (DSL/Cable/Dial)
- Customer point to point link addressing
 (using next-hop-self in IBGP ensures that these do NOT need to be in IGP)
- Static/Hosting LANs
- Customer assigned address space
- Anything else not listed in the previous slide

Preparing the Network OSPF


Preparing the Network Second Step: IBGP

- Second step is to configure the local network to use IBGP
- IBGP can run on
 - all routers, or
 - a subset of routers, or
 - just on the upstream edge
- IBGP must run on all routers which are in the transit path between external connections

Preparing the Network Second Step: IBGP (Transit Path)

- IBGP must run on all routers which are in the transit path between external connections
- Routers C, E and F are not in the transit path
 - Static routes or IGP will suffice
- Router D is in the transit path
 - Will need to be in IBGP mesh, otherwise routing loops will result

Preparing the Network Layers

Typical SP networks have three layers:

- Core the backbone, usually the transit path
- Distribution the middle, PoP aggregation layer
- Aggregation the edge, the devices connecting customers

Preparing the Network Aggregation Layer

- IBGP is optional
 - Many ISPs run IBGP here, either partial routing (more common) or full routing (less common)
 - Full routing is not needed unless customers want full table
 - Partial routing is cheaper/easier, might usually consist of internal prefixes and, optionally, external prefixes to aid external load balancing
 - Communities and peer-groups make this administratively easy
- Many aggregation devices can't run IBGP
 - Static routes from distribution devices for address pools
 - IGP for best exit

Preparing the Network Distribution Layer

Usually runs IBGP

- Partial or full routing (as with aggregation layer)
- But does not have to run IBGP
 - IGP is then used to carry customer prefixes (does not scale)
 - IGP is used to determine nearest exit
- Networks which plan to grow large should deploy IBGP from day one
 - Migration at a later date is extra work
 - No extra overhead in deploying IBGP, indeed IGP benefits

Preparing the Network Core Layer

Core of network is usually the transit path

- IBGP necessary between core devices
 - Full routes or partial routes:
 - Transit ISPs carry full routes in core
 - Edge ISPs carry partial routes only

Core layer includes AS border routers

Decide on:

Best IBGP policy
 Will it be full routes everywhere, or partial, or some mix?

IBGP scaling technique

- Community policy?
- Route-reflectors?

Techniques such as peer groups and peer templates?

□ Then deploy IBGP:

- Step 1: Introduce IBGP mesh on chosen routers
 make sure that IBGP distance is greater than IGP distance (it usually is)
- Step 2: Install "customer" prefixes into IBGP Check! Does the network still work?
- Step 3: Carefully remove the static routing for the prefixes now in IGP and IBGP

Check! Does the network still work?

Step 4: Deployment of EBGP follows

Install "customer" prefixes into IBGP?

- Customer assigned address space
 - Network statement/static route combination
 - Use unique community to identify customer assignments
- Customer facing point-to-point links
 - Redistribute connected through filters which only permit point-to-point link addresses to enter IBGP
 - Use a unique community to identify point-to-point link addresses (these are only required for your monitoring system)
- Dynamic assignment pools & local LANs
 - Simple network statement will do this
 - Use unique community to identify these networks

Carefully remove static routes?

- Work on one router at a time:
 - Check that static route for a particular destination is also learned by the IBGP
 - If so, remove it
 - If not, establish why and fix the problem
 - (Remember to look in the RIB, not the FIB!)
- Then the next router, until the whole PoP is done
- Then the next PoP, and so on until the network is now dependent on the IGP and IBGP you have deployed

Preparing the Network Completion

Previous steps are NOT flag day steps

- Each can be carried out during different maintenance periods, for example:
- Step One on Week One
- Step Two on Week Two
- Step Three on Week Three
- And so on
- And with proper planning will have NO customer visible impact at all

Preparing the Network Configuration – Before BGP

```
interface loopback 0
ip address 121.10.255.1 255.255.255.255
ip ospf 100 area 0
!
interface ethernet 0/0 ! ISP backbone
ip address 121.10.1.1 255.255.255.240
ip ospf 100 area 0
!
interface serial 0/0 ! Customer
ip address 121.10.0.1 255.255.255.252
!
router ospf 100
passive-interface default
no passive-interface ethernet 0/0
!
ip route 121.10.24.0 255.255.252.0 serial 0/0
```

Preparing the Network Configuration – Steps 1 & 2

Preparing the Network Example Two

The network is not running any BGP at the moment

- single statically routed connection to upstream ISP
- The network is running an IGP though
 - All internal routing information is in the IGP
 - By IGP, OSPF or ISIS is assumed

Preparing the Network IGP

If not already done, assign loopback interfaces (with /32 addresses) to each router which is running the IGP

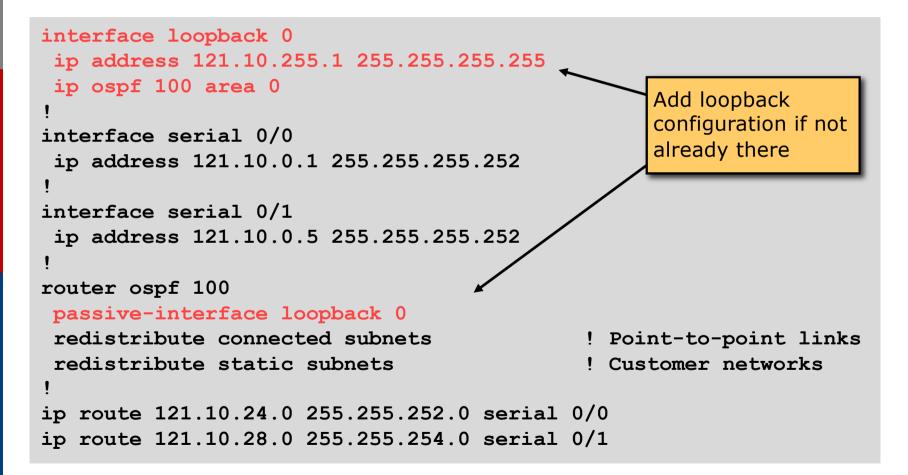
- Loopback is used for OSPF and BGP router id anchor
- Used for IBGP and route origination
- Ensure that the loopback /32s are appearing in the IGP

Preparing the Network IBGP

Go through the IBGP decision process as in Example One
 Decide full or partial, and the extent of the IBGP reach in the network

■ Then deploy IBGP:

- Step 1: Introduce IBGP mesh on chosen routers
 make sure that IBGP distance is greater than IGP distance (it usually is)
- Step 2: Install "customer" prefixes into IBGP Check! Does the network still work?
- Step 3: Reduce BGP distance to be less than the IGP
 (so that IBGP routes take priority)
- Step 4: Carefully remove the "customer" prefixes from the IGP Check! Does the network still work?
- Step 5: Restore BGP distance to be greater than IGP
- Step 6: Deployment of EBGP follows


Install "customer" prefixes into IBGP?

- Customer assigned address space
 - Network statement/static route combination
 - Use unique community to identify customer assignments
- Customer facing point-to-point links
 - Redistribute connected through filters which only permit point-to-point link addresses to enter IBGP
 - Use a unique community to identify point-to-point link addresses (these are only required for your monitoring system)
- Dynamic assignment pools & local LANs
 - Simple network statement will do this
 - Use unique community to identify these networks

Carefully remove "customer" routes from IGP?

- Work on one router at a time:
 - Check that IGP route for a particular destination is also learned by IBGP
 - If so, remove it from the IGP
 - If not, establish why and fix the problem
 - (Remember to look in the RIB, not the FIB!)
- Then the next router, until the whole PoP is done
- Then the next PoP, and so on until the network is now dependent on the IBGP you have deployed

Preparing the Network Example Two Configuration – Before BGP

Preparing the Network Example Two Configuration – Steps 1 & 2

```
! interface and OSPF configuration unchanged
router bqp 100
redistribute connected subnets route-map point-to-point
neighbor 121.10.1.2 remote-as 100
                                                            Add BGP and related
neighbor 121.10.1.2 next-hop-self
                                                            configuration in red
 . . .
network 121.10.24.0 mask 255.255.252.0
network 121.10.28.0 mask 255.255.254.0
distance bqp 200 200 200
ip route 121.10.24.0 255.255.252.0 serial 0/0
ip route 121.10.28.0 255.255.254.0 serial 0/1
route-map point-to-point permit 5
match ip address 1
set community 100:1
access-list 1 permit 121.10.0.0 0.0.255.255
```

Preparing the Network Example Two Configuration – Steps 3 & 4

```
router ospf 100
                                                   OSPF redistribution
passive-interface default
                                                   has been removed,
no passive-interface ethernet 0/0
                                                   OSPF tidied up
router bqp 100
redistribute connected route-map point-to-point
neighbor 121.10.1.2 remote-as 100
neighbor 121.10.1.2 next-hop-self
network 121.10.24.0 mask 255.255.252.0
network 121.10.28.0 mask 255.255.254.0
distance bop 20 20 20
                                   ! reduced BGP distance
ip route 121.10.24.0 255.255.252.0 serial 0/0
ip route 121.10.28.0 255.255.254.0 serial 0/1
...etc...
```

Preparing the Network Example Two Configuration – Step 5

```
router ospf 100
passive-interface default
no passive-interface ethernet 0/0
router bqp 100
redistribute connected route-map point-to-point
neighbor 121.10.1.2 remote-as 100
neighbor 121.10.1.2 next-hop-self
 . .
network 121.10.24.0 mask 255.255.252.0
network 121.10.28.0 mask 255.255.254.0
distance bgp 200 200 200 ! BGP distance restored
ip route 121.10.24.0 255.255.252.0 serial 0/0
ip route 121.10.28.0 255.255.254.0 serial 0/1
...etc...
```

Preparing the Network Completion

Previous steps are NOT flag day steps

- Each can be carried out during different maintenance periods, for example:
- Step One on Week One
- Step Two on Week Two
- Step Three on Week Three
- And so on
- And with proper planning will have NO customer visible impact at all

Preparing the Network Configuration Summary

- IGP essential networks are in IGP
- Customer networks are now in IBGP
 - IBGP deployed over the backbone
 - Full or Partial or Upstream Edge only
- BGP distance is greater than any IGP
- Now ready to deploy EBGP

Transitioning to BGP

ISP Workshops