ISP Systems Design

ISP Workshops

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

Acknowledgements

- This material originated from the Cisco ISP/IXP Workshop Programme developed by Philip Smith & Barry Greene
- Use of these materials is encouraged as long as the source is fully acknowledged and this notice remains in place
- Bug fixes and improvements are welcomed
 - Please email workshop (at) bgp4all.com

Agenda

- DNS Server placement
- Mail Server placement
- News Server placement
- Services network design
- Services Network Security

ISP Services

- Most ISP services such as DNS, Mail, etc are easily deliverable on low budget hardware platforms
 - Single Rack Unit in height (1RU)
 - Dual processor is "default" now
 - RAM is very cheap (may as well use 2Gbytes or more)
 - Hard drives are very cheap (SCSI more reliable)
 - Unix like operating systems (FreeBSD, Debian, Ubuntu, CentOS) are very common
 - In addition to commercial operating systems such as Solaris, RedHat Enterprise Linux &c
 - Minimal overhead, minimal OS install, plus the service required

- Domain Name System
 - Provides name and address resolution
 - Servers need to be differentiated, properly located and specified
 - □ Primary nameserver
 - Secondary nameserver
 - □ Caching nameserver resolver

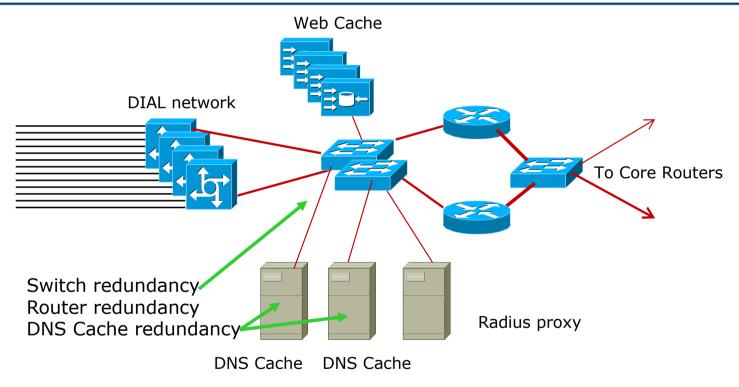
Primary nameserver

- Holds ISP zone files
 - Forward zone (list of name to address mappings) for all ISP's and any customer zones
 - Reverse zone (list of address to name mappings) for all ISP's address space
- Hardware & OS: easily satisfied by simple specification
- Located in secure part of net, e.g. NOC LAN
- Usually run as "hidden master" secondary nameservers are the official listed nameservers

- Secondary nameserver
 - Holds copies of ISP zone files
 - At least two are required, more is better
 - Hardware & OS: easily satisfied by simple specification
 - Strongly recommended to be geographically separate from each other and the primary DNS
 - At different PoPs
 - On a different continent e.g. via services offered by ISC, PCH and others
 - At another ISP

ISP Services: Secondary DNS Example

```
$ dig apnic.net ns
;; ANSWER SECTION:
apnic.net.
                         10800
                                 NS
                                          ns1.apnic.net.
apnic.net.
                         10800
                                 NS
                                          ns3.apnic.net.
apnic.net.
                         10800
                                 NS
                                          ns4.apnic.net.
apnic.net.
                         10800
                                          ns5.apnic.com.
                                 NS
apnic.net.
                         10800
                                 NS
                                          cumin.apnic.net.
apnic.net.
                         10800
                                          ns-sec.ripe.net.
                                 NS
apnic.net.
                                          tinnie.arin.net.
                         10800
                                 NS
apnic.net.
                         10800
                                 NS
                                          tinnie.apnic.net.
;; ADDITIONAL SECTION:
                                                                  Brisbane
ns1.apnic.net.
                         3600
                                          202.12.29.25
                                                                     Tokyo
                                          202.12.28.131
ns3.apnic.net.
                         3600
                                                                Hong Kong
ns4.apnic.net.
                         3600
                                          202.12.31.140
ns5.apnic.com.
                                          203.119.43.200
                         10800
                                                                Washington
                                          202.12.29.59
cumin.apnic.net.
                         3600
tinnie.apnic.net.
                         3600
                                          202.12.29.60
                                                                  Brisbane
ns-sec.ripe.net.
                         113685
                                          193.0.0.196
                                                                Amsterdam
tinnie.arin.net.
                                          199.212.0.53
                         10800
                                 Α
                                                               Washington
```


ISP Services: Secondary DNS Example

- apnic.net zone
 - Primary DNS in Brisbane (ns1.apnic.net)
 - Secondary DNS run all over the world by APNIC:
 - Brisbane
 - Hong Kong
 - Tokyo
 - Washington
 - Zone secondaried by
 - RIPE NCC in Amsterdam
 - ARIN in Washington
 - Geographical and service provider redundancy this is the perfect example!

Caching nameserver

- This is the resolver it is the DNS cache
- Your customers use this as resolver, NEVER your primary or secondary DNS
- Provides very fast lookups
- Does NOT secondary any zones
- One, or preferably two per PoP (redundancy)
- Hardware & OS: easily satisfied by simple specification

ISP Services: Caching Nameserver

DIAL users automatically given the IP addresses of DNS caches when they dial in

ISP Services:

Anycasting the Caching Nameserver

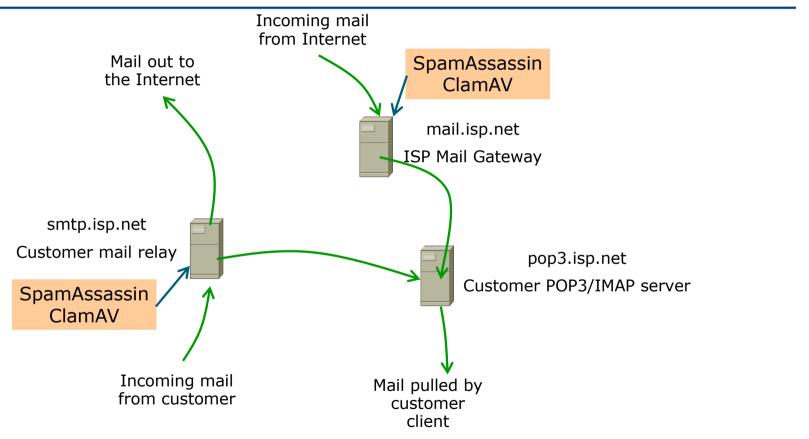
- One trick of the trade
 - Assign two unique IP addresses to be used for the two DNS resolver systems
 - Use these two IP addresses in every PoP
 - Route the two /32s across your backbone
 - Even if the two resolver systems in the local PoP are down, the IGP will ensure that the next nearest resolvers will be reachable
 - Known as IP Anycast

- Efficient and resilient design
 - Primary DNS keep it secure
 - Secondary DNS geographical and provider redundancy
 - Don't ever put them on the same LAN, switched or otherwise
 - Don't put them in the same PoP
 - Caching DNS one or two per PoP
 - Reduces DNS traffic across backbone
 - More efficient, spreads the load

Software

- Make sure that the BIND distribution on the Unix system is up to date
 - The vendor's distribution is rarely current
- Pay attention to bug reports, security issues
- Reboot the DNS cache on a regular (e.g. monthly) basis
 - Clears out the cache
 - Releases any lost RAM
 - Accepted good practice by system administrators

Implementation


- Put all your hosts, point-to-point links and loopbacks into the DNS
 - Under your ISP's domain name
 - Use sensible/meaningful names
- Put all your hosts, point-to-point links and loopbacks into the REVERSE DNS also
 - Don't forget about in-addr.arpa and ip6.arpa many ISPs do
 - Some systems demand forward/reverse DNS mapping before allowing access

ISP Services:

Mail

- Must have at least two mail hosts (MX records) for all supported domains
 - Geographical separation helps
- Dedicated POP3 server
 - Consumers/mobile users get mail from here
- SMTP gateway dedicated to that function
 - Consumers/mobile users send mail via here
- Mail relay open to CUSTOMERS only!
 - Don't let outside world use your mail relay
- Block port 25 outbound for all customers
 - Insist that outbound e-mail goes through SMTP relay
 - SMTP relay does virus (ClamAV) and spam (Spamassassin) filtering

ISP Services: Mail Configuration

ISP Services: Mail Example

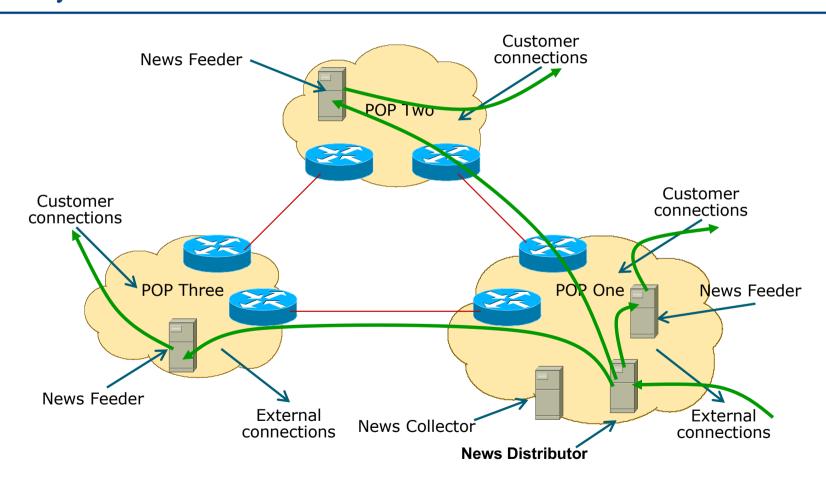
- cisco.com mail (MX records)
 - primary MX are 6 systems in San Jose
 - Three backup MXes in RTP, Amsterdam and Sydney
 - backup MX only used if primary unavailable

```
$ dig cisco.com mx
;; ANSWER SECTION:
cisco.com.
                     86400
                             MX
                                      10 sj-inbound-a.cisco.com.
                                      10 sj-inbound-b.cisco.com.
cisco.com.
                     86400
                             MX
                                      10 sj-inbound-c.cisco.com.
                     86400
cisco.com.
                             MX
cisco.com.
                     86400
                             MX
                                      10 sj-inbound-d.cisco.com.
                                      10 sj-inbound-e.cisco.com.
cisco.com.
                     86400
                             MX
                                      10 sj-inbound-f.cisco.com.
                     86400
cisco.com.
                             MX
cisco.com.
                     86400
                             MX
                                      15 rtp-mx-01.cisco.com.
                                      20 ams-inbound-a.cisco.com.
cisco.com.
                     86400
                             MX
                                      25 syd-inbound-a.cisco.com.
cisco.com.
                     86400
                             MX
```

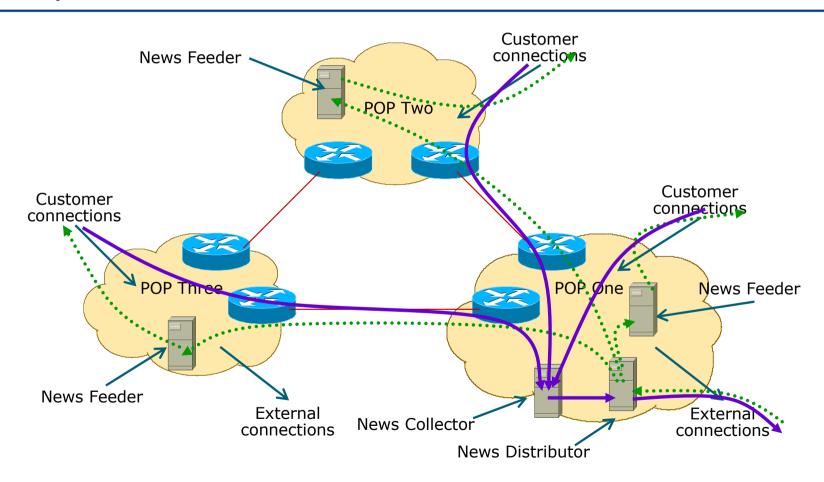
ISP Services: Mail

■ Software

- Make sure that the MAIL and POP3 distributions on the Unix system are up to date
 - The vendor distributions are rarely current
- Pay attention to bug reports, security issues, unsolicited junk mail complaints


IMPORTANT: Do NOT allow non-customers to use your mail system as a relay

ISP Services:


News

- News servers provide a Usenet news feed to customers
- Distributed design required
 - Incoming newsfeed to one large server
 - Distributed to feed servers in each PoP
 - Feed servers provide news feed to customers
 - Outgoing news goes to another server
 - Separate reading news system
 - Separate posting news system

ISP Services: News System Placement

ISP Services: News System Placement

ISP Services:

News

Software

- Make sure that the Internet News distribution on the Unix system is up to date
 - The vendor distributions are rarely current
- Pay attention to bug reports, security issues, unsolicited junk posting complaints

IMPORTANT: Do NOT allow non-customers to use your news system for posting messages

Services Security

Security

- ISP Infrastructure security
- □ ISP Services security
- Security is not optional!
- □ ISPs need to:
 - Protect themselves
 - Help protect their customers from the Internet
 - Protect the Internet from their customers
- The following slides are general recommendations
 - Do more research on security before deploying any network

ISP Infrastructure Security

- ISP server security
 - Usernames, passwords, TCP wrappers, IPTABLES
 - Protect all servers using routers with strong filters applied
- Hosted services security
 - Protect network from hosted servers using routers with strong filters
 - Protect hosted servers from Internet using routers with strong filters

ISP Infrastructure Security ISP Server Protection

Access-list examples:

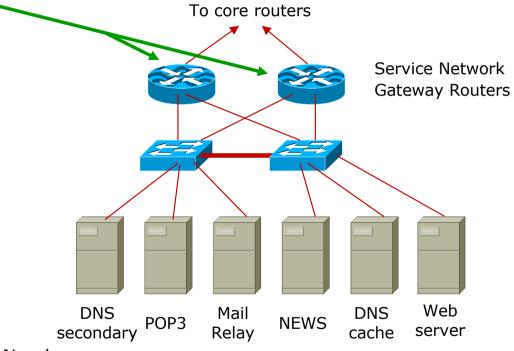
Allow tcp/established to all servers

ICMP

DNS 2ary: udp/53 and tcp/53

POP3: tcp/110

Mail Relay: tcp/25 and ISP address


range only

News: tcp/119 and ISP

address range only

DNS Cache: udp/53 Web server: tcp/80

Other necessary filters:

All servers: SSH (tcp/22) from NOC LAN only

ISP Infrastructure Security Hosted Server Protection

Access-list examples:

Inbound

Allow tcp/established to all servers

ICMP

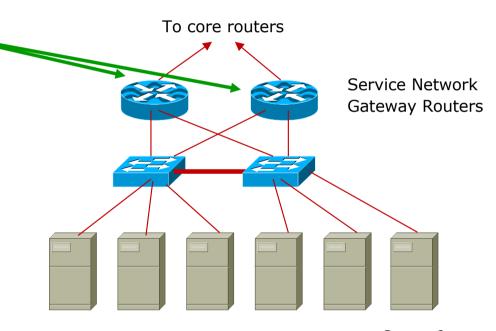
Web server: tcp/80

SSH for customer access

Any other ports for services

sold to customers

Outbound


ICMP

Allow DNS udp/53 and

tcp/53

Block all access to ISP

address range

Server1 Server2 Server3 Server4 Server5 Server6

ISP Infrastructure Security

- Premises security
 - Locks electronic/card key preferred
 - Secure access 24x7 security arrangements
 - Environment control good aircon
- Staff responsibility
 - Password policy, strangers, temp staff
 - Employee exit procedures
- □ RFC2196
 - (Site Security Handbook)
- □ RFC3871
 - (Operational Security Requirements for Large ISP IP Network Infrastructure)

ISP Network Security Secure external access

- How to provide staff access from outside
 - Set up ssh gateway (Unix system with ssh daemon and nothing else configured)
 - Provide ssh client on all staff laptops
 - ssh available on Unix and Windows
 - ssh is Secure Shell encrypted link
- How not to provide access from outside
 - telnet, rsh, rlogin these are all insecure
 - Open host insecure, can be compromised

ISP Systems Design

Summary

ISP Design Summary

- □ KEEP IT SIMPLE & STUPID! (KISS)
- Simple is elegant is scalable
- Use Redundancy, Security, and Technology to make life easier for <u>yourself</u>
- Above all, ensure quality of service for your customers

ISP Systems Design

ISP Workshops