Using BGP Communities

ISP Workshops

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

Acknowledgements

- This material originated from the Cisco ISP/IXP Workshop Programme developed by Philip Smith & Barry Greene
- Use of these materials is encouraged as long as the source is fully acknowledged and this notice remains in place
- Bug fixes and improvements are welcomed
 - Please email workshop (at) bgp4all.com

BGP Videos

- NSRC has made a video recording of this presentation, as part of a library of BGP videos for the whole community to use:
 - https://learn.nsrc.org/bgp#communities

Using BGP Communities

- The BGP community attribute is a very powerful tool for assisting and scaling BGP Policies and BGP Multihoming
- Most major Network Operators make extensive use of BGP communities:
 - Internal policies
 - Inter-provider relationships (MED replacement)
 - Customer traffic engineering

Using BGP Communities

- □ Five scenarios are covered:
 - Well-known BGP communities
 - RFC1998 traffic engineering
 - Extending RFC1998 ideas for even greater customer policy options
 - Community use in Network Operator backbones
 - Customer Policy Control (aka traffic engineering)

Well-known BGP Communities

How the "well-known" BGP communities are used

Well-Known Communities

- Several well-known communities
 - www.iana.org/assignments/bgp-well-known-communities
- □ Five most common:

no-export	65535:65281
Do not advertise to any EBGP peers	
no-advertise	65535:65282
Do not advertise to any BGP peer	
no-peer	65535:65284
Do not advertise to bi-lateral peers (RFC3765)	
blackhole	65535:666
Null route the prefix (RFC7999)	
■ graceful-shutdown	65535:0
Indicate imminent graceful shutdown (RFC8326)	

Well-Known Communities: Notes

- Even though there are several well-known communities there are variations in implementation support
 - Not all vendors will create configuration key-words to support them
 - Not all vendors will automatically implement their behaviours
 - Not all vendors will allow them to be overwritten
 - And so on
- Check vendor documentation for implementation details
 - RFC8642 will give some idea as to the issues to be aware of
- Advice:
 - If the key-word does not exist, create a community declaration that implements the key-word (for configuration clarity & simplicity)

No-Export Community

- AS64501 announces aggregate and subprefixes
 - Intention is to improve loadsharing by leaking subprefixes to upstream AS64502 only
- Subprefixes marked with no-export community
- Router G in AS64502 does not announce prefixes with no-export community set

No-Advertise Community

- Used to not advertise a prefix in IBGP
 - B hears 0.0.0.0/0 from EBGP peer E
 - Tags 0.0.0.0/0 as *no-advertise*
 - B will (automatically) not announce prefix to A, C or D
 - Easier/more scalable than using a prefix filter

No-Peer Community

- Sub-prefixes marked with no-peer community are not sent to bi-lateral peers
 - They are only sent to upstream providers

Blackhole Community

- Used to signal to a BGP neighbour to null route traffic
 - Router E sets blackhole community
 - Router B detects blackhole community on incoming EBGP announcements and sets next-hop to 192.0.2.1
 - 192.0.2.1 is routed to Null interface on all routers within the Autonomous System
 - All traffic to 100.64.6.65 is Null routed

Graceful-Shutdown Community (before)

- Used to inform an EBGP peer that the peering will be going down soon
 - Steady state is primary path between AS64502 and 64501 is via routers E & B
 - AS64502 wants to shutdown direct link, which means traffic will use path via AS64500
 - Graceful-Shutdown ensures that this can be achieved without traffic loss by informing AS64501 that the link is going away

Graceful-Shutdown Community (after)

- Used to inform an EBGP peer that the peering will be going down soon
 - Router E sets graceful-shutdown community
 - Router B detects graceful-shutdown community on incoming EBGP announcements and sets local-preference to 0
 - Best path to 100.64.6.0/24 and 100.64.7.0/24 is now via Router F
 - Allows graceful transition of external best path from Router E to Router F

An example of how Network Operators use communities...

- Informational RFC
- Describes how to implement loadsharing and backup on multiple inter-AS links
 - BGP communities used to determine local preference in upstream's network
- Gives control to the customer
 - Means the customer does not have to phone upstream's technical support to adjust traffic engineering needs
- Simplifies upstream's configuration
 - Simplifies network operation!

□ RFC1998 Community values are defined below

Community Value	Action	Description
ASx:100	set local preference 100	Make this the preferred path
ASx:90	set local preference 90	Make this the backup if dualhomed on ASx
ASx:80	set local preference 80	The main link is to another provider with the same AS path length
ASx:70	set local preference 70	The main link is to another provider

- Upstream Provider defines the communities mentioned
- Their customers then attach the communities they want to use to the prefix announcements they are making
- An example, using AS100 as the upstream ASN:
 - To declare a particular path as a backup path, their customer would announce the prefix with community 100:70 to AS100
 - AS100 would receive the prefix with the community 100:70 tag, and then set local preference to be 70

■ Sample End-Site Router Configuration

```
router bgp 130
address-family ipv4
neighbor 100.66.32.1 remote-as 100
neighbor 100.66.32.1 description Backup Provider
neighbor 100.66.32.1 route-map as100-out out
neighbor 100.66.32.1 send-community
neighbor 100.66.32.1 activate
!
ip as-path access-list 20 permit ^$
!
route-map as100-out permit 10
match as-path 20
set community 100:70
!
```

■ Sample Upstream Router Configuration

```
router bgp 100
address-family ipv4
neighbor 100.66.32.2 remote-as 130
neighbor 100.66.32.2 route-map customer-policy-in in neighbor 100.66.32.2 activate
!
! Homed to another Provider
ip community-list standard rfc1998-70 permit 100:70
! Homed to another Provider with equal ASPATH length ip community-list standard rfc1998-80 permit 100:80
! Customer backup routes
ip community-list standard rfc1998-90 permit 100:90
!
```

```
route-map customer-policy-in permit 10
match community rfc1998-70
set local-preference 70
!
route-map customer-policy-in permit 20
match community rfc1998-80
set local-preference 80
!
route-map customer-policy-in permit 30
match community rfc1998-90
set local-preference 90
!
route-map customer-policy-in permit 40
set local-preference 100
!
```

- RFC1998 was the inspiration for a large variety of differing community policies implemented by Network Operators worldwide
- There are no "standard communities" for Network Operators
- But best practices today consider that Network Operators should use BGP communities extensively for multihoming support of traffic engineering
- Look in the Network Operator AS Object in the IRR for documented community support

RFC1998 Example

Two links to the same AS, one link primary, the other link backup

Two links to the same AS

□ AS100 proxy aggregates for AS 65534

- Announce /19 aggregate on each link
 - primary link makes standard announcement
 - backup link sends community
- When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity

Router A Configuration

```
router bgp 65534
address-family ipv4
network 100.64.0.0 mask 255.255.224.0
neighbor 100.66.10.2 remote-as 100
neighbor 100.66.10.2 description RouterC
neighbor 100.66.10.2 prefix-list aggregate out
neighbor 100.66.10.2 prefix-list default in
neighbor 100.66.10.2 activate
!
ip prefix-list aggregate permit 100.64.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
```

Router B Configuration

```
router bgp 65534
address-family ipv4
network 100.64.0.0 mask 255.255.224.0
neighbor 100.66.10.6 remote-as 100
neighbor 100.66.10.6 description RouterD
neighbor 100.66.10.6 send-community
neighbor 100.66.10.6 prefix-list aggregate out
neighbor 100.66.10.6 route-map routerD-out out
neighbor 100.66.10.6 prefix-list default in
neighbor 100.66.10.6 route-map routerD-in in
neighbor 100.66.10.6 activate
!
..next slide..
```

```
ip prefix-list aggregate permit 100.64.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
route-map routerD-out permit 10
  match ip address prefix-list aggregate
  set community 100:90
route-map routerD-out permit 20
!
route-map routerD-in permit 10
  set local-preference 90
!
```

Router C Configuration (main link)

```
router bgp 100
address-family ipv4
neighbor 100.66.10.1 remote-as 65534
neighbor 100.66.10.1 default-originate
neighbor 100.66.10.1 prefix-list Customer in
neighbor 100.66.10.1 prefix-list default out
neighbor 100.66.10.1 activate
!
ip prefix-list Customer permit 100.64.0.0/19
ip prefix-list default permit 0.0.0.0/0
```

Router D Configuration (backup link)

```
router bgp 100
address-family ipv4
neighbor 100.66.10.5 remote-as 65534
neighbor 100.66.10.5 default-originate
neighbor 100.66.10.5 prefix-list Customer in
neighbor 100.66.10.5 route-map bgp-cust-in in
neighbor 100.66.10.5 prefix-list default out
neighbor 100.66.10.5 activate
!
ip prefix-list Customer permit 100.64.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
...next slide...
```

```
ip community-list standard rfc1998-90 permit 100:90
route-map bgp-cust-in permit 10
match community rfc1998-70
 set local-preference 70
route-map bgp-cust-in permit 20
match community rfc1998-80
 set local-preference 80
route-map bgp-cust-in permit 30
match community rfc1998-90
 set local-preference 90
route-map bgp-cust-in permit 40
 set local-preference 100
```

- □ This is a simple example
- It looks more complicated than the same example presented earlier which used local preference and MEDs
- But the advantage is that this scales better
 - With larger configurations, more customers, more options, it becomes easier to handle each and every requirement

Service Provider use of Communities

RFC1998 was so inspiring...

Background

- RFC1998 is okay for "simple" multihoming situations
- Network Operators create backbone support for many other communities to handle more complex situations
 - Simplify Network Operator BGP configuration
 - Give customer more policy control

Network Operator BGP Communities

- There are no recommended Network Operator BGP communities apart from
 - RFC1998
 - The well-known communities
 - www.iana.org/assignments/bgp-well-known-communities
- Efforts have been made to document from time to time
 - https://www.ietf.org/archive/id/draft-bonaventure-quoitin-bgp-communities-00.txt
 - But so far... nothing more... ⊗
 - Collection of Network Operator communities at www.onesc.net/communities
 - NANOG Tutorial: www.nanog.org/meetings/nanog40/presentations/BGPcommunities.pdf
- Network Operator policy is usually published
 - On the Operator's website
 - Referenced in the AS Object in the IRR

Typical Network Operator BGP Communities

Community Value	Action	Description
X:80	set local-preference 80	Backup path
X:120	set local-preference 120	Primary path (over-ride BGP path selection default)
X:1	set as-path prepend X	Single prepend when announced to X's upstreams
X:2	set as-path prepend X X	Double prepend when announced to X's upstreams
X:3	set as-path prepend X X X	Triple prepend when announced to X's upstreams
X:666	set ip next-hop 192.0.2.1	Blackhole route – very useful for DoS attack mitigation (RFC7999)

Sample Router Configuration (1)

```
router bgp 100
 address-family ipv4
                                                        Customer BGP
 neighbor 100.66.32.2 remote-as 130
 neighbor 100.66.32.2 route-map customer-policy-in in
 neighbor 100.66.32.2 activate
 neighbor 100.65.8.9 remote-as 200
 neighbor 100.65.8.9 route-map upstream-out out
 neighbor 100.65.8.9 activate
                                                       Upstream BGP
ip community-list standard prepend-1 permit 100:1
ip community-list standard prepend-2 permit 100:2
ip community-list standard prepend-3 permit 100:3
ip community-list standard lp-80
                                      permit 100:80
                                      permit 100:120
ip community-list standard lp-120
ip community-list standard RTBH
                                      permit 100:666
                                                          Black hole route
                                                          (on all routers)
ip route 192.0.2.1 255.255.255.255 null0
                                                                    37
```

Sample Router Configuration (2)

```
route-map customer-policy-in permit 10
match community lp-80
set local-preference 80
!
route-map customer-policy-in permit 20
match community lp-120
set local-preference 120
!
route-map customer-policy-in permit 30
match community RTBH
set ip next-hop 192.0.2.1
!
route-map customer-policy-in permit 40
...etc...
```

Sample Router Configuration (3)

```
route-map upstream-out permit 10
match community prepend-1
set as-path prepend 100
!
route-map upstream-out permit 20
match community prepend-2
set as-path prepend 100 100
!
route-map upstream-out permit 30
match community prepend-3
set as-path prepend 100 100 100
!
route-map upstream-out permit 40
...etc...
```

Community	Local-Pref	Description
(default)	120	customer
65520:nnnn	50	this community will only set the local preference within the connected country, not beyond
65530:nnnn	50	this community will only set the local preference within the connected region, not beyond
2914:435	50	only beyond the connected country
2914:436	50	only beyond the connected region
2914:450	96	customer fallback
2914:460	98	peer backup
2914:470	100	peer
2914:480	110	customer backup
2914:490	120	customer default
2914:666		blackhole

Customers wanting to alter their route announcements to other customers

NTT BGP customers may choose to prepend to all other NTT BGP customers with the following communities:

Community	Description
2914:411	prepends o/b to customer 1x
2914:412	prepends o/b to customer 2x
2914:413	prepends o/b to customer 3x

Example: NTT

More info at https://www.gin.ntt.net/support-center/policies-procedures/routing/

Example: Verizon Europe

aut-num:	AS702
descr:	Verizon Business EMEA - Commercial IP service provider in Europe
<snip></snip>	
remarks:	Verizon Business filters out inbound prefixes longer than /24.
	We also filter any networks within AS702:RS-INBOUND-FILTER.
	VzBi uses the following communities with its customers:
	702:80 Set Local Pref 80 within AS702
	702:120 Set Local Pref 120 within AS702
	702:20 Announce only to VzBi AS'es and VzBi customers
	702:30 Keep within Europe, don't announce to other VzBi AS's
	702:1 Prepend AS702 once at edges of VzBi to Peers
	702:2 Prepend AS702 twice at edges of VzBi to Peers
	702:3 Prepend AS702 thrice at edges of VzBi to Peers
	Advanced communities for customers
	702:7020 Do not announce to AS702 peers with a scope of
	National but advertise to Global Peers, European
	Peers and VzBi customers.
	702:7001 Prepend AS702 once at edges of VzBi to AS702
	peers with a scope of National.
	702:7002 Prepend AS702 twice at edges of VzBi to AS702
	peers with a scope of National. And many mo

Additional details of the VzBi communities are located at:

http://www.verizonbusiness.com/uk/customer/bgp/

Example: Arelion

```
AS1299
aut-num:
                Arelion, f/k/a Telia Carrier
descr:
<snip>
remarks:
                BGP COMMUNITY SUPPORT FOR AS1299 TRANSIT CUSTOMERS:
remarks:
remarks:
                Community Action (default local pref 200)
remarks:
remarks:
                1299:50 Set local pref 50 within AS1299 (lowest possible)
remarks:
                1299:150 Set local pref 150 within AS1299 (equal to peer, backup)
remarks:
                1299:1y050 Set local pref 50 in region y
remarks:
                1299:1v150 Set local pref 150 in region v
remarks:
                Where y is:
remarks:
                0= outside own continent
remarks:
                2= Europe
remarks:
                5= North America
                7= Asia Pacific
remarks:
<snip>
remarks:
                European peers
remarks:
                Community Action
remarks:
                1299:200x All peers Europe incl:
remarks:
remarks:
remarks:
                1299:252x NTT/2914
remarks:
                1299:253x Zayo/6461
                1299:254x Orange/5511
remarks:
                                                          And many
remarks:
                1299:256x Lumen/3356
                                                        many more!
remarks:
                1299:257x Verizon/702
<snip>
remarks:
                Where x is number of prepends (x=0,1,2,3) or do NOT announce (x=9)
```

Example: BT Ignite

```
AS5400
aut-num:
descr:
              ВТ
<snip>
                Communities scheme:
remarks:
remarks:
                The following BGP communities can be set by BT
                BGP customers to affect announcements to major peers.
remarks:
remarks:
remarks:
                5400:NXXX
remarks:
                N=1
                            not announce
remarks:
                N=2
                           prepend an extra "5400 5400" on announcement
                Valid values for XXX:
remarks:
remarks:
                000
                            All peers and transits
remarks:
                500
                            All transits
                503
                            Colt AS3356
remarks:
                            Arelion AS1299
remarks:
                509
                            Sprint AS1239
remarks:
                002
remarks:
                004
                            Vodafone Global Network AS1273
remarks:
                005
                            Verizon EMEA AS702
remarks:
                014
                            DTAG AS3320
remarks:
                016
                            Orange AS5511
remarks:
                018
                            Tata Communications Ltd AS6453
                023
remarks:
                            GTT Communications AS3257
                                                             And many
remarks:
                045
                            Telecom Italia Sparkle AS6762
remarks:
                073
                            GTT Communications AS286
                                                                more!
remarks:
                169
                            Cogent AS174
remarks:
                177
                            Telxius Cable AS12956
remarks:
                177
                            Telefonica Germany GmbH AS6805
remarks:
                190
                            Comcast AS7922
remarks:
                191
                            Highwinds Network Group AS12989
<snip>
```

Example: Level3

```
aut-num:
             AS3356
             Level 3 Communications
descr:
<snip>
remarks:
               customer traffic engineering communities - Suppression
remarks:
remarks:
remarks:
                64960:XXX - announce to AS XXX if 65000:0
               65000:0 - announce to customers but not to peers
remarks:
               65000:XXX - do not announce at peerings to AS XXX
remarks:
remarks:
remarks:
               customer traffic engineering communities - Prepending
remarks:
                          - prepend once to all peers
remarks:
                65001:0
remarks:
               65001:XXX - prepend once at peerings to AS XXX
remarks:
                         - prepend twice to all peers
                65002:0
remarks:
               65002:XXX - prepend twice at peerings to AS XXX
<snip>
remarks:
               customer traffic engineering communities - LocalPref
remarks:
remarks:
                         - set local preference to 70
remarks:
                3356:70
                                                                 And many
               3356:80 - set local preference to 80
remarks:
                                                                    more!
remarks:
                3356:90
                         - set local preference to 90
remarks:
remarks:
               customer traffic engineering communities - Blackhole
remarks:
               3356:9999 - blackhole (discard) traffic
remarks:
<snip>
```

Creating your own community policy

- Consider creating communities to give policy control to customers
 - Reduces technical support burden
 - Reduces the amount of router reconfiguration, and the chance of mistakes
 - Use previous Network Operator and configuration examples as a guideline

Using Communities for Backbone Scaling

Scaling BGP in the Service Provider backbone...

Communities for IBGP

- Network Operators tag prefixes learned from their BGP and static customers with communities
 - To identify services the customer may have purchased
 - To identify prefixes which are part of the Provider's PA space
 - To identify PI customer addresses
 - To control prefix distribution in IBGP
 - To control prefix announcements to customers and upstreams
 - (amongst several other reasons)

Service Identification

- Network Operator provides:
 - Transit via upstreams
 - Connectivity via major IXP
 - Connectivity to private peers/customers
- Customers can buy all or any of the above access options
 - Each option is identified with a unique community
- Network Operator identifies whether address space comes from their PA block or is their customers' own PI space
 - One community for each

Community Definitions

```
100:1000 AS100 aggregates
100:1001 AS100 aggregate subprefixes
100:1005 Static Customer PI space
100:2000 Customers who get Transit
100:2100 Customers who get IXP access
100:2200 Customers who get BGP Customer access
100:3000 Routes learned from the IXP
```

```
ip community-list standard aggregates permit 100:1000 ip community-list standard subnets permit 100:1001 ip community-list standard pi permit 100:1005 ip community-list standard transits permit 100:2000 ip community-list standard ixp-access permit 100:2100 ip community-list standard bgp-cust permit 100:2200 ip community-list standard ixp-routes permit 100:3000
```

Aggregates and Static Customers into BGP

```
router bgp 100
address-family ipv4
 network 100.64.0.0 mask 255.255.224.0 route-map as100-prefixes
 redistribute static route-map static-to-bqp
ip prefix-list as100-block permit 100.64.0.0/19 le 32
route-map as100-prefixes permit 10
                                               Aggregate community set
set community 100:1000
route-map static-to-bgp permit 10
match ip address prefix-list as100-block
                                               Aggregate subprefixes
 set community 100:1001
                                               community set
route-map static-to-bgp permit 20
 set community 100:1005
                                               PI community is set
```

Service Identification

- AS100 has four classes of BGP customers
 - Full transit (upstream, IXP and BGP customers)
 - Upstream only
 - IXP only
 - BGP Customers only
- For BGP support, easiest IOS configuration is to create a peergroup for each class (can also use peer-templates to simplify further)
 - Customer is assigned the peer-group of the service they have purchased
 - Simple for AS100 customer installation engineer to provision

BGP Customers Creating peer-groups

```
router bgp 100
 address-family ipv4
  neighbor full-transit peer-group
  neighbor full-transit route-map customers-out out
  neighbor full-transit route-map full-transit-in in
  neighbor full-transit default-originate
 neighbor upstream-only peer-group
  neighbor upstream-only route-map customers-out out
  neighbor upstream-only route-map upstream-only-in in
 neighbor upstream-only default-originate
  neighbor ixp-only peer-group
  neighbor ixp-only route-map ixp-routes out
  neighbor ixp-only route-map ixp-only-in in
  neighbor bgpcust-only peer-group
  neighbor bgpcust-only route-map bgp-cust-out out
  neighbor bgpcust-only route-map bgp-cust-in in
```

BGP Customers Creating route-maps

```
Customers only get AS100
route-map customers-out permit 10
match ip community aggregates ←
                                                       aggregates and default route
route-map full-transit-in permit 10
                                                         Full transit go everywhere
 set community 100:2000 100:2100 100:2200 ←
                                                       Customers buying IXP
route-map upstream-only-in permit 10
                                                        access only get aggregates,
 set community 100:2000
                                                        static & full transit
                                                       customers and IXP routes
route-map ixp-routes permit 10
match ip community aggregates pi transits ixp-access ixp-routes
                                                   Customers buying BGP customer
route-map ixp-only-in permit 10
                                                   access only get aggregates,
 set community 100:2100
                                                   static & full transit customers
route-map bgp-cust-out permit 10
                                                   and other BGP customers
match ip community aggregates pi transits bgp-custs
route-map bgp-cust-in permit 10
                                                                             53
 set community 100:2200
```

BGP Customers – configuring customers

```
router bgp 100
address-family ipv4
 neighbor 100.67.3.2 remote-as 200
 neighbor 100.67.3.2 peer-group full-transit
 neighbor 100.67.3.2 prefix-list as200cust-in
 neighbor 100.67.3.2 activate
 neighbor 100.67.3.6 remote-as 300
 neighbor 100.67.3.6 peer-group upstream-only
 neighbor 100.67.3.6 prefix-list as300cust-in
 neighbor 100.67.3.6 activate
 neighbor 100.67.3.10 remote-as 400
 neighbor 100.67.3.10 peer-group ixp-only
 neighbor 100.67.3.10 prefix-list as400cust-in
 neighbor 100.67.3.10 activate
 neighbor 100.67.3.14 remote-as 500
 neighbor 100.67.3.14 peer-group bgpcust-only
 neighbor 100.67.3.14 prefix-list as500cust-in
 neighbor 100.67.3.14 activate
```

Customers are placed into the appropriate peer-group depending on the service they paid for

Note the specific per-customer inbound filters

BGP Customers – configuring upstream

```
router bgp 100
address-family ipv4
neighbor 100.66.32.1 remote-as 130
neighbor 100.66.32.1 prefix-list full-routes in
neighbor 100.66.32.1 route-map upstream-out out
neighbor 100.66.32.1 activate
!
route-map upstream-out permit 10
match ip community aggregates pi transits
!
! IP prefix-list full-routes is the standard bogon
! prefix filter - or use a reputable bogon
! route-service such as that offered by Team Cymru
```

Aggregates, PI customers and full transit customers are announced to upstream

BGP Customers – configuring IXP peers

```
router bgp 100
address-family ipv4
 neighbor 100.70.0.1 remote-as 901
 neighbor 100.70.0.1 route-map ixp-peers-out out
 neighbor 100.70.0.1 route-map ixp-peers-in in
 neighbor 100.70.0.1 prefix-list AS901-peer in
 neighbor 100.70.0.1 activate
 neighbor 100.70.0.2 remote-as 902
 neighbor 100.70.0.2 route-map ixp-peers-out out
 neighbor 100.70.0.2 route-map ixp-peers-in in
                                                  Aggregates, PI
 neighbor 100.70.0.2 prefix-list AS902-peer in
                                                  customers full transit
 neighbor 100.70.0.2 activate
                                                  and IXP customers are
                                                  announced to the IXP
route-map ixp-peers-out permit 10
match ip community aggregates pi transits ixp-access
route-map ixp-peers-in permit 10
set community 100:3000
```

Service Identification

- While the community set up takes a bit of thought and planning, once it is implemented:
 - EBGP configuration with customers is simply a case of applying the appropriate peer-group
 - EBGP configuration with IXP peers is simply a case of announcing the appropriate community members to the peers
 - EBGP configuration with upstreams is simply a case of announcing the appropriate community members to the upstreams
- All BGP policy internally is now controlled by communities
 - No prefix-lists, as-path filters, route-maps or other BGP gymnastics are required

What about IBGP itself?

- We've made good use of communities to handle customer requirements
 - But what about IBGP?
- Most Network Operators deploy Route Reflectors as a means of scaling IBGP
- □ In transit networks:
 - Core routers (the Route Reflectors) carry the full BGP table
 - Edge/Aggregation routers carry domestic prefixes & customers

IBGP core router/route reflector

```
router bgp 100
address-family ipv4
                                                        The filter to restrict
 neighbor rrc peer-group
                                                        client IBGP to just
 neighbor rrc descr Route Reflector Clients
                                                        domestic prefixes
 neighbor rrc remote-as 100
 neighbor rrc route-reflector-client
 neighbor rrc route-map ibqp-filter out
 neighbor rrc send-community
                                                            Must NOT
 neighbor ibgp-peer peer-group
                                                            forget to send
 neighbor ibgp-peer Standard IBGP peers
                                                            community to
 neighbor ibgp-peer remote-as 100
 neighbor ibgp-peer send-community
                                                            IBGP peers
 neighbor 100.64.0.1 peer-group ibgp-peer
 neighbor 100.64.0.1 activate
                                                          Allow all prefixes
 neighbor 100.64.0.2 peer-group rrc
                                                          coming from the
 neighbor 100.64.0.2 activate
                                                          domestic network
                                                          & IXP
route-map ibqp-filter permit 10
match community aggregates subnets pi transits ixp-access bgp-cust ixp-routes
```

IBGP in the core

- Notice that the filtering of IBGP from the core to the edge is again achieved by a simple route-map applying a community match
 - No prefix-lists, as-path filters or any other complicated policy
 - Once the prefix belongs to a certain community, it has the access across the backbone determined by the community policy in force

Using Communities for Customers Policy

Giving policy control to customers...

Customer Policy Control

- Network Operators have a choice on how to handle policy control for customers
- No delegation of policy options:
 - Customer has no choices
 - If customer wants changes, the operator's Technical Support handles it
- Limited delegation of policy options:
 - Customer has choices
 - The operator's Technical Support does not need to be involved
- BGP Communities are the only viable way of offering policy control to customers

Policy Definitions

■ Typical definitions:

Community	Action
Nil:	No community set, just announce everywhere
X:1	1x prepend to all BGP neighbours
X:2	2x prepend to all BGP neighbours
X:3	3x prepend to all BGP neighbours
X:80	Local preference set to 80 on customer prefixes
X:120	Local preference set to 120 on customer prefixes
X:666	Black hole this route please! (RFC7999)
X:5000	Don't announce to any BGP neighbour
X:5MM0	Don't announce to BGP neighbour MM
X:5MMN	Prepend N times to BGP neighbour MM

Policy Implementation

- The BGP configuration for the initial communities was discussed at the start of this slide set
- But the new communities, X:5MMN, are worth covering in more detail
 - The operator in AS X documents the BGP transits and peers that they have (MM can be 01 to 99)
 - The operator in AS X indicates how many prepends they will support (N can be 1 to 9, but realistically 4 prepends is usually enough on today's Internet)
 - Customers then construct communities to do the prepending or announcement blocking they desire
- If a customer tags a prefix announcement with:
 - 100:5030 don't send prefix to BGP neighbour 03
 - 100:5102 2x prepend prefix announcement to peer 10

Community Definitions

Example: Operator in AS 100 has two upstreams. They create policy based on previous slide to allow no announce and up to 3 prepends for their customers

```
Don't announce anywhere
                                        permit 100:5000
ip community-list standard all-noann
                                        permit 100:5001 ←
                                                            Single prepend to all
ip community-list standard all-pre1
                                        permit 100:5002
ip community-list standard all-pre2
ip community-list standard all-pre3
                                        permit 100:5003
ip community-list standard peer1-noann permit 100:5010
                                                           Don't announce to peer 1
ip community-list standard peer1-pre1
                                        permit 100:5011
ip community-list standard peer1-pre2
                                        permit 100:5012
ip community-list standard peer1-pre3
                                        permit 100:5013
ip community-list standard peer2-noann permit 100:5020
                                        permit 100:5021
ip community-list standard peer2-pre1
                                                           Single prepend to peer 2
ip community-list standard peer2-pre2
                                        permit 100:5022
ip community-list standard peer2-pre3
                                        permit 100:5023
```

Creating route-maps – neighbour 1

```
Don't announce these
route-map bgp-neigh-01 denv 10
                                                 prefixes to neighbour 01
match ip community all-noann peer1-noann
route-map bgp-neigh-01 permit 20
match ip community all-prel peerl-prel
                                                 Single prepend of these
 set as-path prepend 100
                                                 prefixes to neighbour 01
route-map bgp-neigh-01 permit 30
match ip community all-pre2 peer1-pre2
 set as-path prepend 100 100
                                                 Double prepend of these
                                                 prefixes to neighbour 01
route-map bgp-neigh-01 permit 40
match ip community all-pre3 peer1-pre3
 set as-path prepend 100 100 100
                                                 Triple prepend of these
route-map bgp-neigh-01 permit 50
                                                 prefixes to neighbour 01
```

All other prefixes

remain untouched

Creating route-maps – neighbour 2

```
Don't announce these
route-map bgp-neigh-02 denv 10
                                                 prefixes to neighbour 02
match ip community all-noann peer2-noann
route-map bgp-neigh-02 permit 20
match ip community all-prel peer2-prel
                                                 Single prepend of these
 set as-path prepend 100
                                                 prefixes to neighbour 02
route-map bgp-neigh-02 permit 30
match ip community all-pre2 peer2-pre2
 set as-path prepend 100 100
                                                 Double prepend of these
                                                 prefixes to neighbour 02
route-map bgp-neigh-02 permit 40
match ip community all-pre3 peer2-pre3
 set as-path prepend 100 100 100
                                                 Triple prepend of these
route-map bgp-neigh-02 permit 50
                                                 prefixes to neighbour 02
```

All other prefixes

remain untouched

Operator BGP configuration

```
router bgp 100
address-family ipv4
neighbor 100.67.3.2 remote-as 200
neighbor 100.67.3.2 route-map bgp-neigh-01 out
neighbor 100.67.3.2 route-map policy-01 in
neighbor 100.67.3.2 activate
neighbor 100.67.3.6 remote-as 300
neighbor 100.67.3.6 route-map bgp-neigh-02 out
neighbor 100.67.3.6 route-map policy-02 in
neighbor 100.67.3.6 activate
```

- The route-maps are then applied to the appropriate neighbour
- As long as the customer sets the appropriate communities, the policy will be applied to their prefixes

Customer BGP configuration

```
router bgp 600
address-family ipv4
neighbor 100.69.1.1 remote-as 100
neighbor 100.69.1.1 route-map upstream out
neighbor 100.69.1.1 prefix-list default in
neighbor 100.69.1.1 activate
!
route-map upstream permit 10
match ip address prefix-list blockA
set community 100:5010 100:5023
route-map upstream permit 20
match ip address prefix-list aggregate
```

□ This will:

- 3x prepend of blockA towards their upstream's 2nd BGP neighbour
- Not announce blockA towards their upstream's 1st BGP neighbour
- Let the aggregate through with no specific policy

Customer Policy Control

- Notice how much flexibility a BGP customer could have with this type of policy implementation
- Advantages:
 - Customer has flexibility
 - Operator Technical Support does not need to be involved
- Disadvantages
 - Customer could upset the operator's loadbalancing tuning
- Advice
 - This kind of policy control is very useful, but should only be considered if appropriate for the circumstances

Conclusion

Communities

- Communities are fun!
- And they are extremely powerful tools
- Think about community policies, e.g. like the additions described here
- Supporting extensive community usage makes customer configuration easy
- Watch out for routing loops!

Using BGP Communities

ISP Workshops