IPv6 Deployment Planning

ISP Workshops

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

Acknowledgements

- This material originated from the Cisco ISP/IXP Workshop Programme developed by Philip Smith & Barry Greene
- Use of these materials is encouraged as long as the source is fully acknowledged and this notice remains in place
- Bug fixes and improvements are welcomed
 - Please email workshop (at) bgp4all.com

Introduction

- Presentation introduces the high level planning considerations which any network operator needs to be aware of prior to deploying IPv6
- Content applicable for:
 - Business decision makers
 - Network managers
 - Network engineers
 - Will also require implementation detail

Agenda

- 1. Goals
- 2. Network Assessment
- 3. Network Optimisation
- 4. Procuring IPv6 Address Space
- 5. IPv6 Address plan
- 6. Deployment
- 7. Seeking IPv6 Transit
- 8. Customers

Goals

What do we want to achieve?

Goals

- Ultimate aim is to provide IPv6 to our customers:
 - Customers = end users
 - Customers = content providers
- Strategy depends on network transport:
 - Native IP backbone
 - Dual Stack is the solution
 - MPLS backbone (tunnels)
 - 6PE or 6VPE is the solution
 - □ The core infrastructure will remain IPv4 only

Native IP Backbone

- Routers are the infrastructure
 - Customer connections connect to the native backbone
 - VPN services provided using GRE, IPSEC, IPinIP etc
 - Providing IPv6 for customers means upgrading the native infrastructure to dual-stack

MPLS Backbone

- Routers are the infrastructure
 - Public and Private network access provided within the MPLS cloud
 - The core network does NOT need to be IPv6 aware
 - IPv6 access provided by 6PE or 6VPE
 - Provider Edge routers need dual stack capability

Network Assessment

What can run IPv6 today, and what needs to be upgraded?

Assessment

- □ First step in any deployment:
 - Review existing network infrastructure
- Primarily routers across backbone
 - Perhaps also critical servers and services (but not essential as initial focus is on routing infrastructure)

Process

- Analyse each location/PoP
- Document
 - Router or any other L3 device
 - RAM (installed and used)
 - Non-Volatile Configuration memory
 - Software release versions
 - Most network operators already keep track of this info
 - □ If not, RANCID (www.shrubbery.net/rancid/) makes this very easy
- Sanity check
 - Check existing connectivity
 - Remove unused configuration
 - Shutdown and clean up unused interfaces

Software Issues (1)

- Does the existing software have IPv6 support?
 - Yes: deployment is straightforward
 - No: investigate cost of upgrade
- Is a software upgrade available?
 - Yes: is hardware suitably specified?
 - No: hardware replacement
- Implement software upgrade
 - Budget, purchase & schedule installation

Software Issues (2)

- If existing software supports IPv6:
 - Are deployed software versions consistent across infrastructure?
 - Recommend maximum of two variations (easier troubleshooting, bug tolerance, etc)
- If existing software does not support IPv6:
 - Cost of upgrade to a version which does?
 - Testing for existing feature compatibility:
 - A software image with IPv6 may have "lost" features required for the existing operational network

Hardware Issues

- □ Can hardware specification be upgraded (eg RAM, NVRAM, etc)?
 - Yes: budget, purchase, installation
 - No: hardware replacement
- Hardware replacement:
 - Assess suitable replacement product
 - Analyse impact on operating network, existing services and customer

Result

- Once the previous steps are completed, entire network is running IPv6 capable software
- Deployment of IPv6 can now begin

Network Optimisation

Is the IPv4 network the best it can be?

Optimisation

- IPv4 networks have been deployed and operational for many years
 - Your network may fall into this category
- Optimisation means:
 - Does the interior routing protocol make sense?
 - Do all routing protocols have the latest best practices implemented?
 - Are the IGP metrics set so that primary and backup paths operate as expected?

Motivation for Optimisation

- IPv6 deployment (apart from MPLS cores) will be dual stack
 - Which means sitting alongside existing IPv4 configurations
- Aim is to avoid replicating IPv4 "shortcuts" or "mistakes" when deploying IPv6
 - IPv6 configuration will replicate existing IPv4 configuration
- Improvements in routing protocol BCPs should be deployed and tested for IPv4
 - Take the opportunity to "modernise" the network

Procuring IPv6 address space

Now we need addresses...

Getting IPv6 address space (1)

From your Regional Internet Registry

- Become a member of your Regional Internet Registry and get your own allocation
 - Membership usually open to all network operators
 - RIR specific details for IPv6 allocations are listed on the individual RIR website
- Open to all organisations who are operating a network
- Receive a /32 (or larger if you will have more than 65k /48 assignments)

Getting IPv6 address space (2)

- From your upstream ISP
 - Receive a /48 from upstream ISP's IPv6 address block
 - Receive more than one /48 if you have more than 65k subnets
- If you need to multihome:
 - Apply for a /48 assignment from your RIR
 - Trying to multihome with provider's /48 will be operationally challenging
 - □ Provider policies, filters, etc

Address Planning

- IPv6 address space available to each network operator is large compared with IPv4
 - Design a scalable plan
 - Be aware of industry current practices
 - Separation of infrastructure and customer addressing
 - Distribution of address space according to function

Addressing Plans – Infrastructure

- Network Operators should procure a /32 from their RIR
- Address block for infrastructure
 - /48 allows 65k subnets in the backbone
- Address block for router loop-back interfaces
 - Number all loopbacks out of one infrastructure /64
 - /128 per loopback
- Point-to-point links
 - /64 reserved for each, address as a /127
- LANs
 - /64 for each LAN

Addressing Plans – Customer

- Industry standard for customer assignments today:
 - /64 for just one LAN (hosted server)
 - /64 for mobile handset (3GPP Release 9 & earlier)
 - /60 for mobile handset tethering (3GPP Release 10 onwards)
 - /56 for a small network (home user / small business)
 - /48 for a large network (enterprise)

Deploying IPv6

Now we put it onto the network

Deploying addressing and IGP

- Strategy needed:
 - Start at core and work out?
 - Start at edges and work in?
 - Does it matter?
- Only strategy needed:
 - Don't miss out any PoPs
 - Connectivity is by IPv4, so sequence shouldn't matter
 - Starting at core means addressing of point-to-point links is done from core to edge (many ISPs use strategy of low number towards core, high number towards edge)
 - But it really doesn't matter where you start...

IPv6 Deployment

- Number all the infrastructure interfaces according to the established addressing plan
 - No customers yet
- Care needed on LANs
- Secure routers and L3 devices for IPv6 access
 - Once a device is enabled for IPv6, it must have all the same security policies applied as for IPv4

Deploying on PoP LANs

- LANs need special treatment
 - Even those that are only point-to-point links
- □ Issues:
 - ISPs don't want to have Router Advertisements active on network infrastructure LANs
 - Activating IPv6 on a LAN which is not adequately protected may have security consequences
 - Servers may auto configure IPv6
 - No firewall filtering means no security ⇒ compromise

IPv6 Interior Routing Protocols

- Make a decision about which IGP to use
 - (continue with OSPF vs replace with IS-IS?)
- Enable chosen IPv6 IGP
 - Care needed not to break IPv4 connectivity
 - Adjacencies in IPv6 should match existing adjacencies in IPv4
 - IGP v6 routing table should match v4 routing table
- Check that the IPv6 network's operation compares with IPv4 operation
 - Fix any problems
 - In a dual stack network the protocols must function the same way

IPv6 Routing Protocol Deployment

- Enable IPv6 BGP
 - iBGP should replicate IPv4 iBGP
 - Same number of active neighbours
 - IPv6 version of the IPv4 configuration
 - Modify existing templates
 - eBGP comes next
- Check that the IPv6 network's operation compares with IPv4 operation
 - Fix any problems
 - In a dual stack network the protocols must function the same way

Seeking IPv6 Transit

Hello World, I'd like to talk to you...

Seeking Transit

- Most transit ISPs now offer native IPv6 transit
- Next step is to decide:
 - To give transit business to those who will accept a dual stack connection

or

 To stay with existing IPv4 provider and seek a tunnelled IPv6 transit from an IPv6 provider

Dual Stack Transit Provider

- □ Fall into two categories:
 - A. Those who sell you a pipe over which you send packets
 - B. Those who sell you an IPv4 connection and charge extra to carry IPv6
- ISPs in category A are much preferred to those in category B
- Charging extra for native IPv6 is absurd, given that this can be easily bypassed by tunnelling IPv6
 - IPv6 is simply protocol 41 in the range of IP protocol numbers

Dual Stack Transit Provider

Advantages:

- Can align BGP policies for IPv4 and IPv6 perhaps making them more manageable
- Saves money they charge you for bits on the wire, not their colour

Disadvantages:

Not aware of any

Separate IPv4 and IPv6 transit

- Retain transit from resolute IPv4-only provider
 - You pay for your pipe at whatever \$ per Mbps
- Buy transit from an IPv6 provider
 - You pay for your pipe at whatever \$ per Mbps
- Luck may uncover an IPv6 provider who provides transit for free
 - Getting more and more rare as more ISPs adopt IPv6

Separate IPv4 and IPv6 transit

Advantages:

- Not aware of any
- But perhaps situation is unavoidable as long as main IPv4 transit provider can't provide IPv6
- And could be a tool to leverage IPv4 transit provider to deploy IPv6 – or lose business

Disadvantages:

- Do the \$\$ numbers add up for this option?
- Separate policies for IPv4 and IPv6 more to manage

Customer Connections

Network is done, now let's connect paying customers...

Customer Connections

- Giving connectivity to customers is the biggest challenge facing all ISPs
- Needs special care and attention, even updating of infrastructure and equipment
 - Mobile
 - Cable/ADSL
 - Dial
 - Leased lines
 - Wireless Broadband

IPv6 to Mobile Customers

- Access technologies are predominantly 3G and LTE
- End-sites could range from handsets to major corporations
- Strategy depends on infrastructure and device capability:
 - Dual-stack using 464XLAT Android
 - IPv6-only with NAT64 Apple iOS
 - Dual-stack reported to be in Apple iOS 11.3 onwards
 - Mobile operators need to support both popular consumer devices

IPv6 to Mobile Customers (1)

Dual-stack:

- Native IPv4 (private addresses) and IPv6 to handset
- Infrastructure is dual-stack
- Handsets support:
 - All Android phones
 - Apple iOS phones from iOS 11.3 (reported by several mobile operators)
- Operator needs CGNAT to handle IPv4 NAT needs
- Notify Google and Apple for carrier update to be pushed to handsets

Tethering

- Bridging (/64 for handset is shared with tethered devices)
- 3GPP Release 10 adds DHCP-PD support

IPv6 to Mobile Customers (2)

Dual-stack:

- Native IPv6 and IPv4-NAT
 - IPv6 native from handset to content
 - □ IPv4 is carried within IPv6
- Infrastructure is IPv6 only
- Handsets support 464XLAT (CLAT)
 - Most Android phones (4.4.4 and 5.1 onwards)
- Operator needs CGNAT to handle PLAT function for handset access to IPv4 legacy sites

Tethering

- Bridging (/64 for handset is shared with tethered devices)
- 3GPP Release 10 adds DHCP-PD support

IPv6 to Mobile Customers (3)

□ IPv6-only with NAT64:

- Native IPv6 only
- Infrastructure is IPv6 only
- Handsets are IPv6-only
 - Apple iPhone (iOS 9 onwards, iPhone6S onwards)
- Operator needs CGNAT to handle NAT64 function for handset access to IPv4 legacy sites

Tethering

- Bridging (/64 for handset is shared with tethered devices)
- 3GPP Release 10 adds DHCP-PD support

IPv6 to Broadband Customers

- Method 1: Use existing technology and CPE
 - This is the simplest option it looks and feels like existing IPv4 service
 - IPv4: PPPoE (IPCP)
 - IPv6: PPPoE (IPv6CP) + DHCPv6 PD
 - Used by ISPs such as Internode (AU) and XS4ALL (NL)
- □ Issues:
 - IPv6 CPE in some markets are generally more expensive
 - Customised "country versions" often delete IPv6 support
 - Cheapest CPE have no IPv6 need to be replaced/upgraded
 - Customers are very cost conscious \$1 can sway a purchasing decision
- Solution:
 - Operator publishes recommended list of CPE (which support dual-stack)!
 - And sample configurations

IPv6 to Broadband Customers

- Method 2: use 6rd
 - For when Broadband infrastructure cannot be upgraded to support IPv6
 - Used by ISPs such as FREE (FR)
 - Example:
 - 2001:db8:6000::/48 assigned to 6rd
 - □ Customer gets 192.168.4.5/32 by IPCP for native IPv4 link
 - IPv6 address is 2001:db8:6000:0405::/64 for their LAN (taking last 16 bits of IPv4 address)
 - DHCPv6 PD can be used here too (eg to give /56s to customers)
- □ Issues:
 - All CPE need to be replaced/upgraded to support 6rd
- Solution:
 - Operator publishes recommended list of CPE (which support 6rd)!
 - And sample configurations!

IPv6 to Dialup Customers

- Use existing technology:
 - Most dialup access routers are easily upgradable to support IPv6
 - Service looks and feels like the IPv4 service
 - PPP with IPv6CP (or with DHCPv6 PD (??))
 - CPE is usually PC or laptop (and most OSes have supported IPv6 for many years)
 - Service already offered for several years by many ISPs

IPv6 to Fixed Link Customers

- Use existing technology:
 - Most access routers (PE) and Customer routers (CPE) are easily upgradeable or replaceable to include IPv6 support
 - Service looks and feels like existing IPv4 service
- Configuration options:
 - IPv6 unnumbered on point-to-point links (or address them)
 - Static routes, subnet size according to business size
 - Or use BGP with private or public (multihomed) ASN
 - Whatever is done for IPv4 should be repeated for IPv6
- □ Fixed link Customers are probably the easiest to roll IPv6 out to
 - Customer deploying IPv6 within their own networks is a separate discussion (rerun
 of this presentation!)

IPv6 to Customers

- What about addressing? Here is a typical strategy:
 - Mobile Device:
 - \Box /64 = 1 subnet (tethered devices are bridged on to /64)
 - \circ /60 = 16 subnets for tethering (DHCP-PD with 3GPP release 10)
 - Home/Small Organisation:
 - \Box /56 = 256 subnets
 - □ Reserve the whole /48
 - □ There is no IPv6 address shortage!
 - Enterprise/Large Organisation:

Customer Connections

- What about customer end systems?
 - Is IPv6 available on all their computers and other network connected devices?
 - How to migrate those which aren't?
 - How to educate customer operations staff
 - What about their CPE?
 - What about the link between your edge device and their CPE?
 - What about security?

Customer End-Site

- Re-run of this presentation, but:
 - Do all devices need IPv6?
 - Realistically, IPv6 needed on:
 - □ End-user devices (handset, tablet, laptop, desktop) need IPv6
 - Already turned on by default, remember ©
 - External facing servers need IPv6 initially (website, mail relay, public DNS)
 - Corporate Firewalls, Routers and IDS
 - Other internal systems have no urgent need to deploy:
 - Internal facing servers
 - □ IP phone systems & Printers
 - Management access to IP enabled devices
 - Network and Building security monitoring systems

Conclusion

We are done...!

Conclusion

- When deploying IPv6 for the first time, a strategy and planning are of paramount importance
- Presentation has highlighted the steps in the planning and deployment process
 - Variations on the theme are quite likely there is no single correct way of proceeding

IPv6 Deployment Planning

ISP Workshops