Peering Deployment

ISP/IXP Workshops

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

Last updated 30th June 2021

Acknowledgements

- This material originated from the Cisco ISP/IXP Workshop Programme developed by Philip Smith & Barry Greene
 - I'd like to acknowledge the input from many network operators in the ongoing development of these slides
- Use of these materials is encouraged as long as the source is fully acknowledged and this notice remains in place
- Bug fixes and improvements are welcomed
 - Please email workshop (at) bgp4all.com

Philip Smith

Agenda

- Background & Requirements
- Equipment Requirements
- RPKI & IRR
- Peering Documentation
- Router Configuration Recommendations

Background

The Value of Peering presentation covered why Peering was the #1 priority for a network operator in today's Internet

https://bgp4all.com/pfs/_media/workshops/02-value-of-peering.pdf

Real-world – where to begin to set up peering?

- What resources are needed?
- What equipment is needed?
- What are the routing protocol requirements?
- What does an end-site embarking on peering need to do?

4

Resource Requirements

- Operators who are embarking with peering for the first time presumably:
 - Already have their own IP address space
 - Already have their own ASN
 - Already use BGP to talk with their upstream service providers
- If the operator only has a static connection to a single upstream provider, there is more work to be done to prepare the network for peering
 - Consult these two presentations for more information

 https://bgp4all.com/pfs/_media/workshops/06-transitioning-to-bgp.pdf
 https://bgp4all.com/pfs/_media/workshops/10-multihoming-deployment.pdf

Private or Public Peering?

- Private peering
 - Scaling issue, with costs, number of providers, and infrastructure provisioning
- Public peering
 - Makes sense the more potential peers there are (more is usually greater than "two")
- Which public peering point?
 - Local Internet Exchange Point: great for local traffic and local peers
 - Regional Internet Exchange Point: great for meeting peers outside the locality, might be cheaper than paying transit to reach the same consumer base

Local Internet Exchange Point

- Defined as a public peering point serving the local Internet industry
- Local means where it becomes cheaper to interconnect with other ISPs at a common location than it is to pay transit to another ISP to reach the same consumer base
 - Local can mean different things in different regions!

Regional Internet Exchange Point

- These are also "local" Internet Exchange Points
- But also attract regional ISPs and ISPs from outside the locality
 - Regional ISPs peer with each other
 - And show up at several of these Regional IXPs
- Local ISPs peer with ISPs from outside the locality
 - They don't compete in each other's markets
 - Local ISPs don't have to pay transit costs
 - ISPs from outside the locality don't have to pay transit costs
 - Quite often ISPs of disparate sizes and influences will happily peer to defray transit costs

Which IXP?

How many routes are available?

- What is traffic to & from these destinations, and by how much will it reduce cost of transit?
- What is the cost of co-lo space?
 - If prohibitive or space not available, pointless choosing this IXP
- What is the cost of running a circuit to the location?
 - If prohibitive or competitive with transit costs, pointless choosing this IXP
- What is the cost of remote hands/assistance?
 - If no remote hands, doing maintenance is challenging and potentially costly with a serious outage

What should operators do?

- Many operators participate in their local IXP
 - Keeps local traffic local
 - Reduces latency & transit costs for local traffic
 - Gives best experience to the end-user for content
- Many operators also purchase connectivity (bandwidth) to Regional IXPs
 - Bandwidth as IPLC (international private leased circuit)
 NOT buying transit to the Regional IXP
 - And establish peering across the IX fabric
 - And establish PNI with major content operators for Cache fill

Agenda

- Background & Requirements
- Equipment Requirements
- RPKI & IRR
- Peering Documentation
- Router Configuration Recommendations

Equipment requirements

A dedicated peering router is required

- Peering can be done from existing core or border (connecting to upstream) routers, but there are risks involved with that
- Consider separating routers used for private peering from those used to connect to Internet Exchange Points (IXP)

Peering router needs:

- To be able to support BGP
- To be able to handle the expected traffic volume
- Sufficient external interfaces to connect to peers (or the IXP)
- Two or more internal interfaces
 - Common today for border & peering routers to have at least four ethernet ports (one used external facing, the other three internal facing)

Equipment Requirements

■ Typical Scenario:

Peering routers to peers/IXP, Core routers host internal network

Equipment Requirements

- Note separation of the two peering routers
 - IXP Peering router is quite often located at the IXP itself
- Peering Router function:
 - EBGP with peers
 - IBGP and OSPF/IS-IS with core devices
 - Traffic engineering/Policy implementation via BGP
 - Initial protection of the core network with packet filters

Equipment Requirements

IRU router is commonly chosen for IXP peering

- Few interfaces needed
- But high throughput needed
- Examples: Juniper MX204, Cisco NCS540X

Note Well:

- Use a Router
- Never an L3 switch
 - Very hard (if not impossible) to disable all the L2 features of an ethernet switch to make it work as an IXP peering router
 - **•** FIB limits could be challenging (for bigger IXPs)

Agenda

- Background & Requirements
- Equipment Requirements
- RPKI & IRR
- Peering Documentation
- Router Configuration Recommendations

What now?

Status:

- Have obtained IPv4 and IPv6 address space from the RIR
- Have obtained an AS number from the RIR
- Have procured suitable peering routers
- Have finalised which IXP to participate at
 Router procured and physically installed
- Have finalised which peers to interconnect with
 Router procured and physically installed

RPKI: Signing ROAs

- When IPv4 and IPv6 address blocks are delegated, and the AS Number assigned, sign the ROAs
 - ROA stands for Route Origin Authorisation
 - A digital signature stating that a specific AS is authorised to originate a specific address block
 - Document this in your standard operational procedures
 - Don't forget to update the ROA if there are changes in address block size or origin AS

How to sign ROAs?

- Available via your RIR portal
- Usually need to set up two factor authentication first

RPKI: Signing ROAs

A typical ROA would look like this:

Prefix	10.10.0/16
Max-Length	/18
Origin-AS	AS65534

■ There can be more than one ROA per address block

- Allows the operator to originate prefixes from more than one AS
- Caters for changes in routing policy or prefix origin
- (Allows your upstream to originate your address block from their AS until you are ready with your BGP)

Creating ROAs - Important Notes

Always create ROAs for the aggregate and the individual subnets being routed in BGP

Examples:

- If creating a ROA for 10.10.0.0/16 and "max prefix" length is set to /16
 There will only be a valid ROA for 10.10.0.0/16
 - □ If a subnet of 10.10.0.0/16 is originated, it will be state Invalid
- If creating a ROA for 10.1.32.0/23 and "max prefix" length is set to /23
 There will only be a valid ROA for 10.1.32.0/23
 - □ If 10.1.32.0/24 or 10.1.33.0/24 is originated, these will be state Invalid
- If creating a ROA for 10.1.32.0/24 and "max prefix" length is set to /24
 There will only be a valid ROA for 10.1.32.0/24
 - If 10.1.32.0/22 is originated, it will be state NotFound

Internet Routing Registry: Route Object

- A route object documents which AS number is originating the listed route
 - Superseded by a ROA
 - In fact, most RIRs now automatically create a route object in their IRR for each ROA that is signed
- Required by many major transit providers
 - They build their customer and peer filter based on the route-objects listed in the IRR
 - Referring to at least the 5 RIR routing registries and the RADB
 - Some operators run their own instance of the IRR as well
 - May require their customers to place a Route Object there (if not using the 5 RIR or RADB versions of the IRR)

Route Object: Examples

route:	100.64.0.0/24
descr:	ENTERPRISE-BLOCK
country:	ZZ
notify:	noc@yy.zz
mnt-by:	MAINT-ZZ-ENTERPRISE
origin:	AS64500
last-modified:	2018-09-18T09:37:40Z
source:	IRR

This declares that AS64500 is the origin of 100.64.0.0/24

route6:	2001:DB8:F:/48	
descr:	ENTERPRISE-V6BLOCK	
origin:	AS64500	
notify:	noc@yy.zz	
mnt-by:	MAINT-ZZ-ENTERPRISE	
last-modified:	2010-07-21T03:46:02Z	
source:	IRR	

This declares that AS64500 is the origin of 2001:DB8:F::/48

AS Object: Purpose

- Documents peering policy with other Autonomous Systems
 - Lists network information
 - Lists contact information
 - Lists routes announced to neighbouring autonomous systems
 - Lists routes accepted from neighbouring autonomous systems
- Some operators pay close attention to what is contained in the AS Object
 - Some configure their border router BGP policy based on what is listed in the AS Object

AS Object: Example

aut-num: as-name:	AS64500 ENTERPRISE-AS			
descr:	Enterprise Net	twork		
country:	ZZ			
import:	from AS64505	<pre>action pref=100;</pre>	accept ANY	
export:	to AS64505	announce AS64500		
import:	from AS64510	<pre>action pref=100;</pre>	accept ANY	
export:	to AS64510	announce AS64500		
<snip></snip>				
admin-c:	ENO1-ZZ			
tech-c:	ENO1-ZZ			
notify:	noc@yy.zz			
mnt-by:	RIR-HM			
mnt-lower:	MAINT-ZZ-ENTE	RPRISE	Exa	amples of inbound and
mnt-routes:	MAINT-ZZ-ENTE	RPRISE		though policies DDCI
last-modified:	2019-06-09T22	:40:10Z	Out	toound policies – RPSL
source:	IRR			

Internet Routing Registry: Summary

- Route Object
 - Essential to have one
 - These days usually created when a ROA is signed
- AS Object
 - Not essential, but useful and informative
 - Shows operator's peering policy
 - And the ASNs connected to it

Agenda

- Background & Requirements
- Equipment Requirements
- RPKI & IRR
- Peering Documentation
- Router Configuration Recommendations

Types of Operator Peering Policies

- Open Peering
 - Where an ISP publicly states that they will peer with all parties who approach them for peering
 - Commonly found at IXPs where ISP participates via a "Route Server"
- Selective Peering
 - Where an ISP's peering policy depends on the nature of the operator who requests peering with them
 - At IXPs, operator will not peer with the "Route Server" but will only peer bilaterally
- Restrictive Peering
 - Where an ISP decides who its peering partners are, and is generally not approachable to creating peering opportunities

Deciding on a Peering Policy

Access/Hosting Provider

- Generally these will peer with everyone and anyone, as it means they don't have to pay transit costs for traffic
- Route Server peering at an IXP suits them
 - They don't have to maintain EBGP sessions with large numbers of peers
- Local/Regional Transit Provider & Content Provider/CDN
 - Generally these will have a selective peering policy, as they want to have direct contact with their peering partner
 - Business relationships, NOC contacts, Ops contacts, etc
 - They will not use the Route Server at IXPs
- Multi-National Transit Provider
 - Very unlikely to peer with anyone unless at their instigation
 - Any peering will be large volume & in multiple locations around the globe
 - Never at an IXP

The Peering Database

- The Peering Database documents operator peering policies
 - https://www.peeringdb.com
- All operators of ASNs should register in the PeeringDB
 - All operators who are considering peering or are peering must be in the PeeringDB to enhance their peering opportunities
- Participation in peering fora is encouraged too
 - Global Peering Forum (GPF) for North American operators
 - Regional Peering Fora (European, Middle Eastern, Asian, Caribbean, Latin American)
 - Many countries now have their own Peering Fora

Search here for a network, IX, or facility.

pfsinoz

Advanced Search

HKIX

Organization	Hong Kong Internet eXchange Limited
Long Name	Hong Kong Internet Exchange
City	Hong Kong
Country	нк
Continental Region	Asia Pacific
Media Type	Ethernet
Protocols Supported	⊘ Unicast IPv4 () Multicast ⊘ IPv6
Notes 🕄	

Contact Information

Company Website	https://www.hkix.net/
Traffic Stats Website	https://www.hkix.net/hkix/stat/aggt/hkix-aggregate.html
Technical Email	noc@hkix.net
Technical Phone	+85239439900
Policy Email	info@hkix.net
Policy Phone	+85239438800

LAN

MTU	1500
DOT1Q	0
IPv6	2001:7fa:0:1::/64
IPv4	123.255.88.0/21

Local Facilities

Filter

Facility 🕶	Country	City
<u>CUHK</u>	Hong Kong	Hong Kong
<u>MEGA Two (iAdvantage Hong Kong)</u>	Hong Kong	Hong Kong
MEGA-i (iAdvantage Hong Kong)	Hong Kong	Hong Kong

Peers at this Exchange Point		er
Peer Name ▼ ASN	IPv4 IPv6	Speed Policy
ASGCNET HKIX Peering LAN 24167 Asia Pacific Telecom HKIX Peering	123.255.91.53 2001:7fa:0:1::ca28:a135 123.255.91.86	10G Open 10G
LAN 17709	2001:7fa:0:1::ca28:a156	Open
ASLINE HKIX Peering LAN 18013	123.255.92.13 2001:7fa:0:1::ca28:a20d	10G Open
AT&T AP - AS2687 HKIX Peering LAN 2687	123.255.91.46 2001:7fa:0:1::ca28:a12e	10G Selective
Automattic HKIX Peering LAN 2635	123.255.90.71 2001:7fa:0:1::ca28:a047	10G Open
Badoo Ltd HKIX Peering LAN 12678	123.255.90.220 None	2G Open
<u>Baidu</u> HKIX Peering LAN 55967	123.255.90.131 2001:7fa:0:1::ca28:a083	10G Open
Baidu HKIX Peering LAN 55967	123.255.91.61 2001:7fa:0:1::ca28:a13d	10G Open
Bayan Telecommunications Inc. HKIX Peering LAN 6648	123.255.91.45 2001:7fa:0:1::ca28:a12d	3G Open
BGP Network Limited HKIX Peering LAN 64050	123.255.91.177 2001:7fa:0:1::ca28:a1b1	100G Open
BIGHUB-ISP HKIX Peering LAN 137989	123.255.90.207 2001:7fa:0:1::ca28:a0cf	1G Open
BIGHUB-ISP HKIX Peering LAN	123.255.91.98	10G

Search here for a network, IX, or facility.

pfsinoz

Advanced Search

Amazon.com Diamond Sponsor

Organization	<u>Amazon.com</u>	F
Also Known As	Amazon Web Services	
Company Website	http://www.amazon.com	E
Primary ASN	16509	
IRR as-set/route-set	AS-AMAZON	<u>A</u>
Route Server URL		A
Looking Glass URL		1
Network Type	Enterprise	1
IPv4 Prefixes 😯	5000	A
IPv6 Prefixes 🕄	2000	1
Traffic Levels	Not Disclosed	A
Traffic Ratios	Balanced	1
Geographic Scope	Global	A
Protocols Supported	⊘ Unicast IPv4 () Multicast ⊘ IPv6 () Never via route servers	1
Last Updated	2019-12-29T14:56:38Z	⊑ 1
Notes 🕄	If you have a connectivity issue to Amazon then please visit:	<u>₿</u> 1
	 IPv4: http://ec2-reachability.amazonaws.com/ IPv6: http://ipv6.ec2-reachability.amazonaws.com/ 	<u>B</u>
	And include detail on prefixes you think you have a problem with if you contact our Ops alias. This will reduce time with troubleshooting.	1 B
	The following Amazon US locations and associated IX's carry routes/traffic specific only to the services with infrastructure in that metro. For example, Jacksonville is	1 R F
	 Source on the only, whereas Ashburn is Cloud Front, EC2, S3, etc.) Seattle Palo Alto San Jose Los Angeles Dallas 	F A 1

Public Peering Exchange Points	Filter	
Exchange ▼ ASN	IPv4 IPv6	Speed RS Peer
AMS-IX	80.249.210.100	400G
16509	2001:7f8:1::a501:6509:1	0
AMS-IX	80.249.210.217	400G
16509	2001:7f8:1::a501:6509:2	0
AMS-IX Chicago	206.108.115.36	100G
16509	2001:504:38:1:0:a501:65 09:1	0
AMS-IX Hong Kong	103.247.139.10	100G
16509	2001:df0:296::a501:6509: 1	0
AMS-IX India	223.31.200.29	10G
16509	2001:e48:44:100b:0:a501 :6509:2	0
AMS-IX India	223.31.200.30	10G
16509	2001:e48:44:100b:0:a501 :6509:1	0
BBIX Osaka	218.100.9.24	40G
16509	2001:de8:c:2:0:1:6509:1	0
BBIX Tokyo	218.100.6.52	200G
16509	2001:de8:c::1:6509:1	0
BBIX Tokyo	218.100.6.207	200G
16509	2001:de8:c::1:6509:2	0
BCIX BCIX Peering LAN	193.178.185.95	200G
BIX BC Main	2001.710.19.1.4070.1	1000
16509	2001.7f8.58.407d.0.1	1000
BNIX	194 53 172 122	100G
Private Peering Facilities	Filter	
Facility ▼ ASN	Country City	
151 Front Street West Toronto	Canada	
16509	Toronto	
	0	

Search here for a network, IX, or facility.

Advanced Search

pfsinoz

Telia Carrier

Organization	Telia Group
Also Known As	TeliaSonera, Telia, TSIC
Company Website	http://www.teliacarrier.com/
Primary ASN	1299
RR as-set/route-set 😧	RIPE::AS-TELIANET RIPE::AS-TELIANET-V6
Route Server URL	
ooking Glass URL	https://lg.telia.net/
Network Type	NSP
Pv4 Prefixes 😧	426000
Pv6 Prefixes 🕄	40000
Fraffic Levels	1 Tbps+
Fraffic Ratios	Balanced
Geographic Scope	Global
Protocols Supported	⊘ Unicast IPv4) Multicast ⊘ IPv6) Never via route servers
ast Updated	2020-02-05T11:43:25Z
Notes 🕄	IPv4 + IPv6 Prefixes above would be actuals, not proposed max- prefix values.
	AS1299 is matching RPKI validation state and reject invalid prefixes from peers and customers. Our looking- glass marks validation state for all prefixes. Please review your registered ROAs to reduce number of invalid prefixes.
	All trouble ticket requests or support related emails should be sent to carrier-csc@teliacompany.com.

Peering Policy Information

Peering Policy	https://www.teliacarrier.com/dam/jcr:d1e83942-3db1-4334- a5f8- 431578633d26/Telia_Carrier_Global_Peering_Policy.pdf
General Policy	Restrictive

Public Peering Exchange Points	Filter			
Exchange ▼ ASN	IPv4 IPv6		Speed RS Peer	
No filter matches. You may filter by Exchange , ASN or Speed.				
Private Peering Facilities	[Filter		
Facility ▼ ASN	Country City			
<u>365 Data Centers Buffalo (BU1)</u> 1299	United State	s of America		
<u>365 Data Centers Detroit (DT1)</u> 1299	United State Southfield	s of America		
<u>365 Data Centers Nashville (NA1)</u> 1299	United State Nashville	s of America		
<u>365 Data Centers Tampa (TA1)</u> 1299	United State Tampa	s of America		
<u>3U Rechenzentrum Berlin</u> 1299	Germany Berlin			
Altus IT 1299	Croatia Zagreb			
<u>Borovaya 57</u> 1299	Russia St. Petersbu	rg		
CE Colo Prague 1299	Czechia Prague			
CINECA - DC NaMeX 1299	ltaly Roma			
COD BM-18 1299	Russia St.Petersbur	g		
<u>Caldera21</u> 1299	ltaly Milan			
<u>CarrierColo Berlin Luetzow (I/P/B/ site B)</u> 1299	Germany Berlin			
Cologix MTL3 1299	Canada Montreal	Screenshot		

Peering Priorities

■ Fully operational networks tend to:

- Have "static" customers
 - Typical enterprise, small office, and home user
- Have BGP customers
 - Customers who multihome between two or more providers
- Peer at Internet Exchange Points
 - Bi-lateral peers
 - Peers via the IXP Route Server
- Private Peer with various network operators
- Buy transit from two or three upstream providers

Peering Priorities

- Transit providers are last resort
 - They cost money!
- Internet Exchange Point peers are a priority
 - No cost traffic interconnect via a third party L2 infrastructure
 - Bi-lateral peers are higher priority than those via the Route Server
- Private peers are higher priority than IXP peers
 - Direct interconnect does not involve a third party
 - Can be deemed "more reliable" and "higher capacity" than the IXP, therefore more dependable
- BGP and static customers are of highest priority of all
 - They earn money!
- What does this mean for setting policy?

Peering Priorities

Setting local preferences on incoming BGP announced routes:

Connection	Local Preference		
BGP Customers	250		
Private Peers	200		
IXP Bi-Lateral Peers	175		
IXP RS Peers	150		
(default)	100		
Transit Providers	50		

Agenda

- Background & Requirements
- Equipment Requirements
- RPKI & IRR
- Peering Documentation
- Router Configuration Recommendations

Router Configuration Recommendations

- Internet Exchange Points usually have "rules" for new members connecting to their IXP fabric
 - Consult the Euro-IX Best Current Operational Practice pages:
 https://www.euro-ix.net/en/forixps/set-ixp/ixp-bcops/
 - Especially the technical recommendations
- Private Peers will usually have requirements for interconnection as well
 - Some form of "contract" document or agreement, which will include technical recommendations, contact details etc.

Physical interface connecting to an IXP:

- Cat5E (or Cat6) cable if:
 - Physically close to the IXP (same room, adjacent rack)
 - 100Mbps or 1Gbps link
 - Switch supports it
- Single mode fibre patch:
 - To IXP switch if in same facility
 - To transmission equipment if IXP is remote
 - □ Use SFP if 1Gbps, SFP+ if 10Gbps, etc
- Fibre optics are almost always preferred and are relatively inexpensive
- Usually the IXP will supply the SFP needed for their switch

- Physical Interface configuration notes:
 - Use the LAN subnet address (IPv4/IPv6) provided by the IXP
 - Disable:
 - Proxy ARP
 - Forwarding of Directed Broadcasts
 - Sending of ICMP Redirect messages
 - All discovery protocols (eg CDP, LLDP)
 - IPv6 Neighbour Discovery:
 - Router Advertisements
 - IPv6 Routing Prefix Advertisement

Cisco IOS Example:

```
interface Gig 0/0/1
description IXP LAN
ip address 192.0.2.10 255.255.255.0
no ip redirects
no ip proxy-arp
no ip directed-broadcast
no cdp enable
ipv6 address 2001:DB8:1:1::a/64
no ipv6 redirects
ipv6 nd prefix default no-advertise
ipv6 nd ra suppress all
'
```

General Configuration:

- Turn off/don't enable unneeded services including:
 - DHCP server
 - BOOTP server
 - TFTP server
 - HTTP & HTTPS servers
 - Listeners for low TCP and UDP ports
 - CDP/LLDP
 - DHCP relay

Cisco IOS Example:

```
no service dhcp
no ip bootp server
no tftp-server <Argument>
no ip http server
no ip http secure-server
no service tcp-small-servers
no service udp-small-servers
no cdp run
interface Gigabit 0/0/1
no ip helper-address <DHCP server>
```

- Peering router only carries routes that peers should receive
 - No defaults (in BGP, or OSPF/IS-IS, or static pointing to core)
 - No full BGP table
 - This is so that peers can't accidentally/deliberately (?) transit your network by pointing a default route at your router
 - Packet filters could be used, but that's both a denial of service vector and potentially a severe burden on CPU based routers)

Routing Configuration:

- Point default route to the null (discard) interface
 - Disable ICMP unreachable messages being sent
 - Incoming packets with no specific entries in the forwarding table will be silently discarded
 - Much more efficient than packet filtering

Cisco IOS Example:

```
interface Null0
  no ip unreachables
  no ipv6 unreachables
!
ip route 0.0.0.0 0.0.0.0 null0
ipv6 route ::/0 null0
```

Routing Configuration:

- Never configure an IGP on the peering interfaces
 - Especially for IXPs!
 - Avoids accidental leakage of internal routes
 - Avoids potentially malicious traffic on the peering LAN
 - Check with your vendor implementation how to do this

Cisco IOS OSPF Example:

```
interface Gigabit 0/0/1
description IXP LAN
ip address 192.0.2.10 255.255.255.0
ipv6 address 2001:DB8:1:1::a/64
...
!
router ospf 100
passive-interface Gigabit 0/0/1
...<!</pre>
```

Cisco IOS IS-IS Example:

```
interface Gigabit 0/0/1
description IXP LAN
ip address 192.0.2.10 255.255.255.0
ipv6 address 2001:DB8:1:1::a/64
...
!
router isis ISP
passive-interface Gigabit 0/0/1
...
!
```

43

- Don't originate any prefixes into BGP on the IXP peering router
 - If this router is cut off from network core, it will still originate prefixes and likely still be best path, breaking your backup via your Transit Providers

- Don't originate any prefixes into BGP on the IXP peering router
 - If this router is cut off from network core, it will still originate prefixes and likely still be best path, breaking your backup via your Transit Providers

- The IXP LAN subnet must never be carried in BGP
 - Carrying it in OSPF/IS-IS is okay so that traceroutes don't appear broken
 - Use the IBGP "next-hop-self" feature
 - If IXP LAN carried in IBGP, chances are it might leak to your EBGP and out to the Global Internet; which means:
 - Other networks can now transit your network to get access to all IXP peers!!
 - Because IXP LAN is publicly known and it takes little trial and error to work out which peer is on which IXP address
 - Some IXPs are now signing their IXP LAN with the AS0 ROA but members need to do their part too!

Peering Router: BGP Configuration

Use BGP Communities wherever possible!

- Make Peering Router a route reflector client (RRC)
 - Running core routers as Route Reflectors (RR) is standard practice
 - Only announce internal prefixes/aggregates to the Peering Router
 Communities make this easy!
 - See https://bgp4all.com/pfs/_media/workshops/11-bgp-communities.pdf

Peering Router: BGP Configuration

Create suitable BGP policies:

- Always filter all inbound and outbound BGP announcements!
- RFC8212 reminds what default policy should be in the absence of filters
 - Default policy: accept nothing, send nothing
 - Most vendors still do not adhere to this requirement!
- Outbound is going to be same for every peer at IXP
 - Create a policy statement to be shared amongst all peers
 - Basically matching the communities that get out to peers
 - (Aggregates, any BGP customers)
 - Cisco IOS: route-map and peer-group)

Peering Router: BGP Configuration

Create suitable BGP policies:

- Inbound policy is going to have two parts:
 - A per-peer prefix filter
 - A uniform policy for all peers:
 - Setting Local Preference High
 - Assign a specific "IXP" community
 - Remember the Local Preference values in the Peering Priorities discussed earlier
- For Internal BGP, Peering router needs to carry all customer routes, the aggregates, and subnets of the aggregates

• Note Well: Subnets of aggregates are not announced to external BGP peers

Peering Router: EBGP Configuration

Cisco IOS EBGP Configuration Example

```
router bqp 64500
neighbor 192.0.2.10 remote-as 64505
neighbor 192.0.2.10 description Bi-lateral Peering with Peer-10
neighbor 192.0.2.10 prefix-list PEER-10 in
neighbor 192.0.2.10 route-map IXP-peers-in in
neighbor 192.0.2.10 route-map IXP-peers-out out
ip prefix-list PEER-10 permit <prefixes from Peer-10>
                                                       The community for prefixes
route-map IXP-peers-in permit 5
                                                        learned from IXP peers (for
 set local-preference 175
                                                        example)
 set community 64500:1200
route-map IXP-peers-in deny 10
                                                       Pre-defined communities for
1
                                                       AS100 aggregates and BGP
route-map IXP-peers-out permit 5
                                                       customers
match community aggregates bgp-customers
route-map IXP-peers-out deny 10
!
```

Peering Router: IBGP Configuration

Cisco IOS IBGP Configuration Example

```
interface Loopback 0
 ip address 100.64.1.3 255.255.255.255
1
router bqp 64500
neighbor 100.64.1.1 remote-as 64500
neighbor 100.64.1.1 description IBGP with Core1 RR
neighbor 100.64.1.1 send-community both
neighbor 100.64.1.1 next-hop-self
 neighbor 100.64.1.1 update-source Loopback0
                                                       IOS does not send communities
 neighbor 100.64.1.2 remote-as 64500
                                                        by default: send both standard
neighbor 100.64.1.2 description IBGP with Core2 RR
                                                       and extended types
 neighbor 100.64.1.2 send-community both
neighbor 100.64.1.2 next-hop-self
neighbor 100.64.1.2 update-source Loopback0
I
```

Core Router: IBGP Configuration

Cisco IOS IBGP Configuration Example

```
interface Loopback 0
 ip address 100.64.1.1 255.255.255.255
1
router bqp 64500
neighbor 100.64.1.3 remote-as 64500
neighbor 100.64.1.3 description IBGP with PR1 RR Client
neighbor 100.64.1.3 send-community both
neighbor 100.64.1.3 next-hop-self
neighbor 100.64.1.3 update-source Loopback0
neighbor 100.64.1.3 route-map partial-IBGP out
neighbor 100.64.1.3 route-reflector-client
 . . .
route-map partial-IBGP permit 5
                                                         Pre-defined communities for AS64500
match community aggregate subnets bgp-customers
                                                         aggregates, subnets, and BGP customers
route-map partial-IBGP deny 10
I
```

Peering Router: Other BGP Configuration

Password on EBGP session

- Often required by many operators
- Often required by IXP Route Servers
- BGP TTL Hack (RFC5082)
 - Neighbour sets TTL to 255
 - Some operators require this
 - Needs to be done on both ends

neighbor 192.0.2.10 password s0m3th1ng5ecre7

neighbor 192.0.2.10 ttl-security hops 1

Peering Router: Other BGP Configuration

Strip out private & reserved ASNs

- Private range 64512-65534
- Private range 400000000 upwards
- Documentation 64496 to 64511 and 65536-65551
- Cisco IOS has neighbor 192.0.2.10 remove-private-As
 Only works for original 16-bit private range
- None should appear on global Internet
- Note: some operators block all ASNs from 458752 and above
 RIRs are assigning from 131072 to 458751 only (for now)

Peering Router: Other BGP Configuration

Maximum Prefix Tracking:

- Set a limit on the number of prefixes expected from a peer
- Protects the network from accidental route leaks and misconfiguration by peers
- Used widely and considered a best operational practice
- Cisco IOS example:

```
neighbor 192.0.2.10 maximum-prefix <max> [restart N] [<threshold>] [warning-only]
```

- Where maximum-prefix is usually set to double what is expected from a peer
- Router will issue warnings at 75% of threshold
- Router will tear down peering once the number reaches the maximum
- And can optionally restart the BGP session at N minutes later (hoping that the configuration error has been fixed)

Peering Router: Route Origin Validation

 $\hfill\square$ Check routes to ensure the origin AS is valid

- Aim is to defeat prefix hijacks & misoriginations
 - Covered in depth:

https://bgp4all.com/pfs/_media/workshops/02-rpki.pdf

- In short:
 - Set up a validator (e.g. NLnetLabs Routinator 3000)
 - Configure Peering (and all EBGP) Routers to talk with validator
 - Drop invalid routes (done by default in Cisco IOS)
 - Cisco IOS example:

```
router bgp 645000
bgp rpki server tcp 10.0.0.3 port 3323 refresh 3600
```

Note that some IXPs already do this on their Route Servers

Peering Security

Implement the MANRS recommendations

https://www.manrs.org

- Prevent propagation of incorrect routing information
 Filter BGP peers, in & out!
- 2. Prevent traffic with spoofed source addresses
 - » BCP38 Unicast Reverse Path Forwarding on access network
- 3. Facilitate communication between network operators
 - » NOC to NOC Communication
 - > Up-to-date details in Route and AS Objects, and PeeringDB
- 4. Facilitate validation of routing information
 - » Route Origin Authorisation using RPKI

Configuration Recommendations

Most are considered industry best practices

- BGP configuration advice are all part of BGP best operational practice recommendations
- Many operators are more strict than even what is covered here!
- MANRS compliance is vitally important for the wellbeing of the Internet
- □ When peering, remember:
 - Don't misuse the interconnects with your peers
 - Don't leave your network open to misuse by your peers
 - Don't abuse the interconnect infrastructure (IXP)

Summary

- Background & Requirements
- Equipment Requirements
- RPKI & IRR
- Peering Documentation
- Router Configuration Recommendations

Peering Deployment

ISP/IXP Workshops