2025/09/24 20:26 1/11 RPKI Hints, Top Tips, and FAQs

RPKI Hints, Top Tips, and FAQs

On this page I'm collecting how to do various RPKI bits and pieces. Usually because the supplied
documentation is incomplete, or just plain useless.

Here is the list (so far):

¢ NLnetLabs Routinator 3000
¢ NIC Mexico FORT

e RPKI-client

e GORTR

e StayRTR

The tips and tricks discussed below all are for Ubuntu 20.04. They should also work just fine on
Ubuntu 18.04 (which is supported until April 2023) and I'll note if | experience otherwise. I've not
tested anything on the Ubuntu interims since 20.04.

NLnetLabs Routinator

Nothing to say here, the instructions just work, the validator installs sweetly, and just runs. As long as
the instructions are followed.

If using Debian/Ubuntu as | do, then just use the supplied package and your favourite package
manager. Described in NLnetLabs's Github repo.

You could build from source if you really want to, but why bother. If the link to the supplied package is
added to your package manager, for example apt on Ubuntu, then create an entry in
/etc/apt/sources.list.d called routinator.list and put this in it (which is for Ubuntu 20.04):

deb [arch=amd64] https://packages.nlnetlabs.nl/linux/ubuntu/ focal main

Easy!

FORT

FORT is not quite so easy to install, but still relatively simple as long as you follow the instructions
closely.

The installation instructions are on Github.

(Actually, Marco d'Itri has created a Debian package which you can use to install from. But the FORT
team note that it may be a release or two behind their own packaging.)

First step is to grab the .deb file from their archive:

wget

Philip Smith's Internet Development Site - https://bgp4all.com/pfs/

https://github.com/NLnetLabs/routinator#quick-start-with-debian-and-ubuntu-packages
https://nicmx.github.io/FORT-validator/installation.html
https://tracker.debian.org/pkg/fort-validator

Last update: 2022/01/28 06:00 hints:rpki https://bgp4all.com/pfs/hints/rpki?rev=1643349619

https://github.com/NICMx/FORT-validator/releases/download/1.5.3/fort 1.5.3-1
_amd64.deb

and then install it:
sudo apt install ./fort 1.5.3-1 amd64.deb
Note that the apt install installs a systemd file and starts FORT running automatically. FORT uses

TCP/323 as the listener port - you may want to customise this, and to do that, edit the configuration
file /etc/fort/config.json. This is the configuration file that | use:

{
"tal": "/etc/fort/tal",
"local-repository": "/var/lib/fort",
"slurm": "/etc/fort/slurm/",
"server": {
“port": "3323"
}
"log": {
"output": "syslog"
}
}

All I have done is modify the port that the server listens on.

The package ships with 4 of the 5 Trust Anchor Locators, so to get the missing one (ARIN's), you will
need to run:

sudo fort --init-tals --tal=/etc/fort/tal

You will be asked to confirm that you have read the Terms and Conditions regarding ARIN's TAL:

Jan 26 03:50:46 DBG: Done. Total bytes transferred: 466
Jan 26 03:50:46 DBG: HTTP result code: 200
Successfully fetched '/etc/fort/tal/apnic.tal'!

Attention: ARIN requires you to agree to their Relying Party Agreement (RPA)
before you can download and use their TAL.

Please download and read https://www.arin.net/resources/manage/rpki/rpa.pdf
If you agree to the terms, type 'yes' and hit Enter: yes

Jan 26 03:50:51 DBG: HTTP GET:
https://www.arin.net/resources/manage/rpki/arin.tal

Jan 26 03:50:51 DBG: Done. Total bytes transferred: 487

Jan 26 03:50:51 DBG: HTTP result code: 200

Successfully fetched '/etc/fort/tal/arin.tal'!

Jan 26 03:50:51 DBG: HTTP GET:
https://www.lacnic.net/innovaportal/file/4983/1/lacnic.tal

https://bgp4all.com/pfs/ Printed on 2025/09/24 20:26

2025/09/24 20:26 3/11 RPKI Hints, Top Tips, and FAQs

One thing that | found is that FORT crashes on start up following the above installation instructions to
the letter. The issue is that the /var/lib/fort folder is owned by root, not by the fort user. Easy to fix:

sudo chown fort:fort /var/lib/fort
Then restart FORT:
sudo systemctl restart fort

and it should run successfully. You should see something like this when you run systemctl status
fort:

* fort.service - FORT RPKI validator
Loaded: loaded (/lib/systemd/system/fort.service; enabled; vendor
preset: enabled)
Drop-In: /run/systemd/system/service.d
Lzzz-1xc-service.conf
Active: active (running) since Wed 2022-01-26 03:54:05 UTC; 4s ago
Docs: man:fort(8)
https://nicmx.github.io/FORT-validator/
Main PID: 3100 (fort)
Tasks: 37 (limit: 28794)
Memory: 12.0M
CGroup: /system.slice/fort.service
L3100 /usr/bin/fort --configuration-file /etc/fort/config.json

You can check by using ps ax to get:

195 ? Ssl 95:13 /usr/bin/fort --configuration-file
/etc/fort/config.json

and netstat -an (upto Ubuntu 18.04) or ss -an (on Ubuntu 20.04 onwards) to get:

tcp LISTEN © 128 0.0.0.0:3323
0.0.0.0:%

RPKI-client

rpki-client is just a validator - it does not have the functionality to accept connections from a router.
We'll come to that later on (we'll need to use Cloudflare's GoRTR or its fork, StayRTR).

rpki-client has no package, although again Marco d'ltri is working on one as you can find from the
Debian package tracker.

Before you attempt to download and build it, the rpki-client instructions note that you need a few
other packages in place. These include automake, autoconf, make, git itself, libtool and expat.
This is all quite easy using the Ubuntu package manager.

Philip Smith's Internet Development Site - https://bgp4all.com/pfs/

Last update: 2022/01/28 06:00 hints:rpki https://bgp4all.com/pfs/hints/rpki?rev=1643349619

sudo apt install automake autoconf make git libtool libexpatl-dev

The other required package noted in the instructions is tls from LibreSSL. LibreSSL is a branch of
OpenSSL and is used on OpenBSD - not found on Linux, but seems to be appearing in the latest
Debian/Ubuntu beta builds. So we need to download the bits we need and install. The rpki-client
instructions don't say anything about how to do that.

First we go to https://ftp.openbsd.org/pub/OpenBSD/LibreSSL/ and select the latest package, which is
libressl-3.4.2.tar.gz at time of writing

wget https://ftp.openbsd.org/pub/OpenBSD/LibreSSL/libressl-3.4.2.tar.qgz

We then unpack it:

tar zxf libressl-3.4.2.tar.gz

and then build it:

cd libressl-3.4.2

./configure --enable-libtls-only

make

sudo make install

Note the option to only build libtls - we don't need the rest of LibreSSL and it could well interfere with
OpenSSL which will already be on the system. Now that libtls is built, the install action will put the

libraries in /usr/local/lib like this:

-rw-r--r-- 1 root root 27392794 Jan 20 15:17 libtls.a

-rw-r--r-- 1 root root 933 Jan 20 15:17 libtls.la
lrwxrwxrwx 1 root root 16 Jan 20 15:17 1libtls.so -> 1libtls.s0.22.0.0
lrwxrwxrwx 1 root root 16 Jan 20 15:17 1libtls.so0.22 ->

libtls.s0.22.0.0
-rw-r--r-- 1 root root 13146784 Jan 20 15:17 1libtls.s0.22.0.0

Run sudo Idconfig so that the system knows about the new libraries.

Next we need to get some packages that rpki-client needs. These are libssl-dev and rsync.
sudo apt install libssl-dev rsync

And now we are ready to build rpki-client.

Easiest is just to install rpki-client from the Github repository:
git clone https://github.com/rpki-client/rpki-client-portable.git
and then:

cd rpki-client-portable
./autogen.sh

https://bgp4all.com/pfs/ Printed on 2025/09/24 20:26

https://ftp.openbsd.org/pub/OpenBSD/LibreSSL/
https://github.com/rpki-client/rpki-client-portable

2025/09/24 20:26 5/11 RPKI Hints, Top Tips, and FAQs

./configure --with-tal-dir=/etc/rpki \
--with-base-dir=/var/lib/rpki-client \
--with-output-dir=/var/db/rpki-client

make

The autogen.sh script fixes the config set up, ready to run configure which will produce the
Makefile. Note that we are specifying where our TALs go, where the temporary files go (following
Ubuntu norms), and where the output file storing the VRPs goes (again following Ubuntu norms).

Hidden in the official instructions is a comment that rpki-client runs as a normal user if started as
root. So we need to create that normal user:

sudo groupadd rpki-client
sudo useradd —g rpki-client —s /sbin/nologin —-d /nonexistent —c "rpki-
client user" rpki-client

Now we can install RPKI-client:
sudo make install

which will install the client in /usr/local/sbin and the 4 TALs in /etc/rpki, as well as create the cache
and output directories needed. Note that the ARIN TAL requires users to read the disclaimer first so is
not provided by default. So you need to do this manually:

wget https://www.arin.net/resources/manage/rpki/arin.tal
sudo mv arin.tal /etc/rpki

Now the client can be run. There is no daemon option, it simply runs at the command line, and when
it has finished downloading all the VRPs (around 10-15 minutes depending on bandwidth) it exits. But
that's okay. Try running the client:

sudo /usr/local/sbin/rpki-client

You'll see errors about various CAs or files not being accessible - that's their problem, not yours. If you
check in the /var/db/rpki-client folder you will see an openbgpd file once the above run of rpki-
client completes. This is the configuration you'd need if you run openbgp. However, we are going to
run a standalone RtR client instead, so we will need JSON output instead.

Once rpki-client completes, we can now set it up to run automatically. To do this, we create a file in
/etc/cron.hourly called rpki-client, and in it we put:

#!/bin/bash

run RPKI-client every hour

- default output location is /var/db/rpki-client

- -j option means json output, suitable for stayrtr

/usr/local/sbin/rpki-client -j > /tmp/rpki-client.log 2>&1

and that's it. Every hour, cron will run rpki-client which will produce JSON output of all the VRPs it
has collected. As noted above, J]SON output is what is used by StayRTR and GoRTR as their input

Philip Smith's Internet Development Site - https://bgp4all.com/pfs/

Last update: 2022/01/28 06:00 hints:rpki https://bgp4all.com/pfs/hints/rpki?rev=1643349619

sources. Make sure that the /etc/cron.hourly/rpki-client is executable, otherwise it will not run.
It's a good idea to check the log file in case rpki-client reports issues trying to write local files etc.

But mostly what you'll see there are all the transactions with the various CAs, and the problems
encountered (there will be lots, unfortunately).

GoRTR

I've included GoRTR here though it is no longer maintained by Cloudflare as the maintainer has
moved on to pastures new. All development work is now being carried out on StayRTR which is a hard
fork of GORTR.

Installing Go

First you will need a working Go environment. Full instructions are at https://go.dev/doc/install, and
I've reproduced the key pieces here to make it easy for installers.

First off, download the latest Go package (1.17.6 at time of writing):

wget https://go.dev/dl/gol.17.6.linux-amd64.tar.gz

If you have an existing Go environment, perhaps save it in case something goes wrong with the new
version:

sudo mv /usr/local/go /usr/local/go.old
and then you can unpack the new version:

cd /usr/local

sudo chmod 777 .

tar xzf ~/g0l.17.6.linux-amd64.tar.gz
sudo chmod 755 .

Next add /usr/local/go/bin to the PATH environment variable. If you use bash, this would be in the
.profile in your home directory, and just add:

if [-d "/usr/local/go/bin"] ; then
PATH="$PATH: /usr/local/go/bin"
fi
Log off. And then log in again. (Easiest way of activating the updated PATH.)
And now check you have a working Go environment:

go version

If the version shows what you installed, you are set!

https://bgp4all.com/pfs/ Printed on 2025/09/24 20:26

https://go.dev/doc/install

2025/09/24 20:26 7/11 RPKI Hints, Top Tips, and FAQs

Installing GoORTR

Easiest way to do this is to build from the Github repo.
Notel: You could download and use the provided binaries if you wish.

Note2: You could even download the Debian package if you wish, and install that. It needs the
adduser package, and a libc from 2.4 onwards (most modern Ubuntu releases). Bonus with the .deb
package is that it comes with a systemd configuration.

But we will focus on building from the source.

git clone https://github.com/cloudflare/gortr.git
cd gortr
make build-gortr build-rtrmon build-rtrdump

which builds gortr as well as rtrmon and rtrdump (the latter used for testing purposes).

Copy the resulting binaries to /usr/local/bin:

cd dist

sudo -s

cp -p gortr-v0.14.7-1-9g2125744-1inux-x86 64 /usr/local/bin/gortr

cp -p rtrdump-v0.14.7-1-9g2125744-1inux-x86 64 /usr/local/bin/rtrdump
cp -p rtrmon-v0.14.7-1-9g2125744-1inux-x86 64 /usr/local/bin/rtrmon

GoRTR has lots of options, but the ones we need are these:

-bind string
Bind address (default ":8282")
-cache string
URL of the cached JSON data (default
"https://rpki.cloudflare.com/rpki.json")
-checktime
Check if file is still valid (default true)
-verify
Check signature using provided public key (disable by passing -
verify=false)

We don't need to use the Cloudflare JSON source, given we have our own from the newly created
RPKI-client. RPKI-client doesn't insert a timestamp in the way that GoRTR wants, nor is there a
signature on it, so we need to disable that too.

We run GoRTR like this:

/usr/local/bin/gortr -bind :3323 -verify=false -cache /var/db/rpki-
client/json -checktime=false

which will at least let us test that it works. Run it and see what happens - you should see output at the
command line looking like this:

Philip Smith's Internet Development Site - https://bgp4all.com/pfs/

https://github.com/cloudflare/gortr
https://github.com/cloudflare/gortr/releases
https://packages.debian.org/sid/amd64/gortr

Last update: 2022/01/28 06:00 hints:rpki https://bgp4all.com/pfs/hints/rpki?rev=1643349619

INFO[0001] New update (304138 uniques, 304138 total prefixes). 0 bytes.
Updating sha256 hash ->
0592ddc6e9a82666f8ddc5eda8cad76cb61122640f17199b1bff06b5928b9718
INFO[0002] Updated added, new serial 0

INFO[0002] GORTR Server started (sessionID:33094, refresh:3600, retry:600,
expire:7200)

And if you check the ports that are listening (ss -an) you will see:

tcp LISTEN 0 128 *:13323
tcp LISTEN 0 128 *:8080

Port 3323 is the listening port for Router connections. And Port 8080 is the metrics port, for
monitoring systems to connect to.

But perhaps this isn't good for long term operations as you'd prefer to have this start running
automatically when the system starts. And for that we'd need to set up a suitable systemd entry (to
be completed).

StayRTR

StayRTR is a hard fork of GoRTR which is no longer maintained by Cloudflare. For this reason, |
recommend you use StayRTR rather than GoRTR.

As of writing this, there are no packages you can just download and run. So we'll download the source
and build from there.

Note: there is an experimental .deb package by Marco d'ltri, but that needs at least Ubuntu 21.04 to
support it, as it requires a libc which is 2.32 or newer (Ubuntu 20.04 uses libc version 2.31).

Given it's parentage in GoRTR, the install process is very similar. First off, make sure you have a
working Go environment - consult the instructions in the GoRTR section above.

Easiest way to install StayRTR is build from the Github repo.

git clone https://github.com/bgp/stayrtr.git
cd stayrtr
make build-all

which builds stayrtr as well as rtrmon and rtrdump (the latter used for testing purposes).

Copy the resulting binaries to /usr/local/bin (note if you have GoRTR installed too, as | do, you may
want to rename its rtrdump and rtrmon binaries appropriately):

cd dist

sudo cp -p stayrtr-0.1-91-gc4ac625-1inux-x86 64 /usr/local/bin/stayrtr
sudo cp -p rtrdump-0.1-91-gcd4ac625-1inux-x86 64 /usr/local/bin/rtrdump
sudo cp -p rtrmon-0.1-91-gc4ac625-1inux-x86 64 /usr/local/bin/rtrmon

https://bgp4all.com/pfs/ Printed on 2025/09/24 20:26

https://packages.debian.org/sid/stayrtr
https://github.com/bgp/stayrtr

2025/09/24 20:26 9/11 RPKI Hints, Top Tips, and FAQs

StayRTR has lots of options, but the ones we need are these:

-bind string

Bind address (default ":8282")
-cache string

URL of the cached JSON data (default
"https://console.rpki-client.org/vrps.json")

We don't need to use the public RPKI-client JSON source, given we have our own from the newly
created RPKI-client.

We run StayRTR like this:
/usr/local/bin/stayrtr -bind :3323 -cache /var/db/rpki-client/json

which will at least let us test that it works. Run it and see what happens - you should see output at the
command line looking like this:

INFO[0000O] new cache file: Updating sha256 hash ->
eOal4ea955e183e2719dcfbee0e9429b34581972c6ad5f6e9e064eel1396caf60

INFO[0001] New update (307007 uniques, 307007 total prefixes).

INFO[0002] Updated added, new serial 0

INFO[0002] StayRTR Server started (sessionID:60037, refresh:3600, retry:600,
expire:7200)

And if you check the ports that are listening (ss -an) you will see:

tcp LISTEN © 128 *:0847
tcp LISTEN © 128 *13323

Port 3323 is the listening port for Router connections. And Port 9847 is the metrics port, for
monitoring systems to connect to.

But perhaps this isn't good for long term operations as you'd prefer to have this start running
automatically when the system starts. And for that we'd need to set up a suitable systemd entry.

First off, let's create a user for StayRTR (it does not have to run as root):

sudo groupadd stayrtr

sudo useradd —g stayrtr —s /sbin/nologin —d /nonexistent —c "StayRTR user"
_stayrtr

Next we create a file /etc/default/stayrtr with the following contents:

Settings for StayRTR. Consult https://github.com/bgp/stayrtr for
more discussion and other available options

STAYRTR ARGS=-bind :3323 -cache /var/db/rpki-client/json
#

Then we go to the /lib/systemd/system/ folder and create the systemd entry - call it

Philip Smith's Internet Development Site - https://bgp4all.com/pfs/

Last update: 2022/01/28 06:00 hints:rpki https://bgp4all.com/pfs/hints/rpki?rev=1643349619

stayrtr.system. Here is a simple one that should work:

[Unit]

Description=StayRTR RPKI to Router Server
Documentation=https://github.com/bgp/stayrtr

After=network

[Service]

.target

EnvironmentFile=/etc/default/stayrtr
ExecStart=/usr/local/bin/stayrtr $STAYRTR ARGS

Type=exec
User= stayrtr

Group=_stayrtr
AmbientCapabilities=CAP_NET BIND SERVICE
CapabilityBoundingSet=CAP_NET BIND SERVICE

[Install]

WantedBy=multi-user.target

We then need to enable it:

sudo systemctl enable stayrtr

which then displays:

Created symlink /etc/systemd/system/multi-user.target.wants/stayrtr.service
- /1lib/systemd/system/stayrtr.service.

and then we can run StayRTR, like this:

sudo systemctl start stayrtr

Once it is running,

check that it is working by running:

sudo systemctl status stayrtr

and you should see something like this:

* stayrtr.service - StayRTR RPKI to Router Server

Loaded:
preset: ena
Active:
Docs:

Tasks:
CGroup:

client/js
Jan 28 15:50:
Server...
Jan 28 15:50:

loaded (/lib/systemd/system/stayrtr.service; enabled; vendor

active (running) since Fri 2022-01-28 15:50:27 AEST; 25s ago
https://github.com/bgp/stayrtr Main PID: 17390 (stayrtr)

11 (limit: 4915) Memory: 241.8M
/system.slice/stayrtr.service

L_17390 /usr/local/bin/stayrtr -bind :3323 -cache /var/db/rpki-

27 stayrtr systemd[1]: Starting StayRTR RPKI to Router

27 stayrtr systemd[1]: Started StayRTR RPKI to Router Server.

https://bgp4all.com/pfs/

Printed on 2025/09/24 20:26

2025/09/24 20:26 11/11

RPKI Hints, Top Tips, and FAQs

Jan 28 15:50:27 stayrtr stayrtr[17390]:
level=info m
Jan 28 15:50:28 stayrtr stayrtr[17390]:
level=info m
Jan 28 15:50:29 stayrtr stayrtr[17390]:
level=info m
Jan 28 15:50:29 stayrtr stayrtr[17390]:
level=info m

time="2022-01-28T15:50:27+10:00"

time="2022-01-28T15:50:28+10:00"

time="2022-01-28T15:50:29+10:00"

time="2022-01-28T15:50:29+10:00"

and you can also run the more traditional ps ax to see something like:

17390 ? Ssl 0:04 /usr/local/bin/stayrtr -bind :3323 -cache

/var/db/rpki-client/json

And that's it. Enjoy your new StayRTR installation.

Back to Home page

From:

https://bgp4all.com/pfs/ - Philip Smith's Internet Development Site

Permanent link:

https://bgp4all.com/pfs/hints/rpki?rev=1643349619

Last update: 2022/01/28 06:00

Philip Smith's Internet Development Site - https://bgp4all.com/pfs/

https://bgp4all.com/pfs/hints/start
https://bgp4all.com/pfs/
https://bgp4all.com/pfs/hints/rpki?rev=1643349619

	RPKI Hints, Top Tips, and FAQs
	NLnetLabs Routinator
	FORT
	RPKI-client
	GoRTR
	Installing Go
	Installing GoRTR

	StayRTR

