
2026/01/19 12:33 1/22 RPKI Hints, Top Tips, and FAQs

Philip Smith's Internet Development Site - https://bgp4all.com/pfs/

RPKI Hints, Top Tips, and FAQs

On this page I'm collecting how to do various RPKI bits and pieces. Usually because the supplied
documentation is incomplete, or just plain useless.

These are my build notes, and I keep them current in so far as I use them for the validators I maintain
for the NSRC Global R&E Routing Table report and for RouteViews. YMMV.

NB: always use the most up to date/current versions of the validators - things are moving pretty
quickly, and the older versions can often be quite buggy, if not unstable.

Here is the list (so far):

AS0 TALs
Routinator 3000 validator from NLnetLabs
FORT validator from NIC Mexico
RPKI-client validator
StayRTR
GoRTR from Cloudflare
Cisco IOS-XE
Juniper
BIRD
FRR

The tips and tricks for the validator builds discussed below all are for Ubuntu 22.04. They should also
work just fine on Ubuntu 18.04 (which is supported until April 2023) and on Ubuntu 20.04 (which is
supported until April 2025).

AS0 TALs

Two of the Regional Internet Registries have supplied Trust Anchor Locators (TALs) for unassigned IP
address space that they hold.

If you want to use these TALs, you can read more:

APNIC's AS0 TAL
LACNIC's AS0 TAL

Generally, to use these TALs, place each in a separate file (eg place APNIC's one in apnic-as0.tal) in
the usual place where you keep your TALs - it depends on your validator of course.

NLnetLabs Routinator

Nothing to say here, the instructions just work, the validator installs sweetly, and just runs. As long as
the instructions are followed. The current version of Routinator is 0.13.0, at time of writing.

If using Debian/Ubuntu as I do, then just use the supplied package and your favourite package

https://www.apnic.net/community/security/resource-certification/trust-anchor-locator/
https://www.lacnic.net/4984/2/lacnic/rpki-rpki-trust-anchor

Last update: 2023/12/27 14:34 hints:rpki https://bgp4all.com/pfs/hints/rpki?rev=1703687652

https://bgp4all.com/pfs/ Printed on 2026/01/19 12:33

manager. Described in NLnetLabs's Github repo.

If the link to the supplied package is added to your package manager, for example apt on Ubuntu,
then create an entry in /etc/apt/sources.list.d called nlnetlabs.list and put this in it (which is for
Ubuntu 22.04):

deb [arch=amd64] https://packages.nlnetlabs.nl/linux/ubuntu/ jammy main

Then run:

wget -qO- https://packages.nlnetlabs.nl/aptkey.asc | sudo tee
/etc/apt/trusted.gpg.d/nlnetlabs.asc

And then finally:

apt-get update
apt install routinator

Easy!

The installer will set up the necessary systemd file so that Routinator starts automatically on boot.
Remember to modify the /etc/routinator/routinator.config file so that Routinator listens on the
IPv4 (and IPv6) ports of the system - and you can enable the default statistics pages which listen on
port 8323. A working configuration file would look like this:

repository-dir = "/var/lib/routinator/rpki-cache"
rtr-listen = ["x.x.x.x:3323", "[x:x:x:x::x]:3323"]
http-listen = ["x.x.x.x:8323", "[x:x:x:x::x]:8323"]

As from Routinator 0.12.0, the 5 RIR TALs are distributed built-in to the validator, so there is no longer
any need to read and agree to the ARIN RPA.

At time of writing, though, if you want to use the AS0 TALs from LACNIC and APNIC (see above), the
“extra-tals-dir” option mentioned in the configuration guide only works on the command line and not
in the Routinator configuration file that ships as part of the package. This means creating an user
modification to the systemd setup /etc/systemd/system/routinator.service like this:

[Service]
ExecStart=
ExecStart=/usr/bin/routinator --config=/etc/routinator/routinator.conf --
extra-tals-dir="/var/lib/routinator/tals" --syslog server

where the /var/lib/routinator/tals folder contains the two AS0 TALs you want to use. The first blank
ExecStart is needed to overwrite the one that is shipped in
/lib/system/system/routinator.service. Once this bug is fixed you can remove this user defined
systemd setting and put the extra-tals-dir definition in the configuration file, like this:

repository-dir = "/var/lib/routinator/rpki-cache"
extra-tals-dir = "/var/lib/routinator/tals"
rtr-listen = ["x.x.x.x:3323", "[x:x:x:x::x]:3323"]

https://github.com/NLnetLabs/routinator#quick-start-with-debian-and-ubuntu-packages

2026/01/19 12:33 3/22 RPKI Hints, Top Tips, and FAQs

Philip Smith's Internet Development Site - https://bgp4all.com/pfs/

http-listen = ["x.x.x.x:8323", "[x:x:x:x::x]:8323"]

FORT

FORT is the validator developed by NIC Mexico. More about it is on the Project page. At time of
writing, version 1.6.1 has been released.

FORT is available as part of Ubuntu 22.04 packaging, but it is an older version (1.5.3), so for this
reason we use the NIC Mexico produced package.

FORT is not quite so easy to install, but still relatively simple as long as you follow the instructions on
their Github repo closely.

First step is to grab the .deb file from their archive:

wget
https://github.com/NICMx/FORT-validator/releases/download/1.6.1/fort_1.6.1-1
_amd64.deb

and then install it:

sudo apt install ./fort_1.6.1-1_amd64.deb

Note that the apt install installs a systemd file and starts FORT running automatically. FORT uses
TCP/323 as the listener port - you may want to customise this, and to do that, edit the configuration
file /etc/fort/config.json. This is the configuration file that I use:

{
 "tal": "/etc/fort/tal",
 "local-repository": "/var/lib/fort",
 "slurm": "/etc/fort/slurm/",
 "server": {
 "port": "3323"
 },
 "log": {
 "output": "syslog"
 }
}

All I have done is modify the port that the server listens on.

The package ships with 4 of the 5 Trust Anchor Locators, so to get the missing one (ARIN's), you will
need to run:

sudo fort --init-tals --tal=/etc/fort/tal

You will be asked to confirm that you have read the Terms and Conditions regarding ARIN's TAL:

...

https://fortproject.net/en/validator
https://nicmx.github.io/FORT-validator/installation.html

Last update: 2023/12/27 14:34 hints:rpki https://bgp4all.com/pfs/hints/rpki?rev=1703687652

https://bgp4all.com/pfs/ Printed on 2026/01/19 12:33

Jan 26 03:50:46 DBG: Done. Total bytes transferred: 466
Jan 26 03:50:46 DBG: HTTP result code: 200
Successfully fetched '/etc/fort/tal/apnic.tal'!

Attention: ARIN requires you to agree to their Relying Party Agreement (RPA)
before you can download and use their TAL.
Please download and read https://www.arin.net/resources/manage/rpki/rpa.pdf
If you agree to the terms, type 'yes' and hit Enter: yes
Jan 26 03:50:51 DBG: HTTP GET:
https://www.arin.net/resources/manage/rpki/arin.tal
Jan 26 03:50:51 DBG: Done. Total bytes transferred: 487
Jan 26 03:50:51 DBG: HTTP result code: 200
Successfully fetched '/etc/fort/tal/arin.tal'!

Jan 26 03:50:51 DBG: HTTP GET:
https://www.lacnic.net/innovaportal/file/4983/1/lacnic.tal
...

One thing that I found is that FORT crashes on start up following the above installation instructions to
the letter. The issue is that the /var/lib/fort folder is owned by root, not by the fort user. Easy to fix:

sudo chown fort:fort /var/lib/fort

Then restart FORT:

sudo systemctl restart fort

and it should run successfully. You should see something like this when you run systemctl status
fort:

* fort.service - FORT RPKI validator
 Loaded: loaded (/lib/systemd/system/fort.service; enabled; vendor
preset: enabled)
 Drop-In: /run/systemd/system/service.d
 └─zzz-lxc-service.conf
 Active: active (running) since Wed 2022-01-26 03:54:05 UTC; 4s ago
 Docs: man:fort(8)
 https://nicmx.github.io/FORT-validator/
 Main PID: 3100 (fort)
 Tasks: 37 (limit: 28794)
 Memory: 12.0M
 CGroup: /system.slice/fort.service
 └─3100 /usr/bin/fort --configuration-file /etc/fort/config.json

You can check by using ps ax to get:

 195 ? Ssl 95:13 /usr/bin/fort --configuration-file
/etc/fort/config.json

and netstat -an (upto Ubuntu 18.04) or ss -an (on Ubuntu 20.04 onwards) to get:

2026/01/19 12:33 5/22 RPKI Hints, Top Tips, and FAQs

Philip Smith's Internet Development Site - https://bgp4all.com/pfs/

tcp LISTEN 0 128 0.0.0.0:3323
0.0.0.0:*

The systemd that ships with FORT doesn't have a “restart on failure” setting so it is a good idea that
we do this so that if/when FORT crashes, it will automatically restart.

Create a new /etc/systemd/system/fort.service (which is where to create user-defined extras for
systemd go), and in it put:

[Service]
Restart=
Restart=on-failure

(If you edit the /lib/systemd/system/fort.service it will be overwritten on the next upgrade of
FORT, so it is best create the user entry instead.)

And your new FORT installation is now ready for service!

RPKI-client

rpki-client is just a validator - it does not have the functionality to accept connections from a router.
We'll come to that later on (we'll need to use StayRTR, which is a fork of Cloudflare's now mostly
unmaintained GoRTR).

rpki-client has now been packaged and is available as part of the Ubuntu 22.04 distribution.
However, the packaged version is old (version 7.6). At the time of writing, the current release of rpki-
client is version 8.7.

So for this reason, and to stay up to date, at least on Ubuntu, we have to build it ourselves. A pity that
the rpki-client maintainers don't build their own deb package, or pre-build packages like NLnetLabs
do with Routinator. Oh well.

Initial Preparation

Before you attempt to download and build it, the rpki-client instructions note that you need a few
other packages in place. These include automake, autoconf, make, git itself, libtool and expat.
This is all quite easy using the Ubuntu package manager.

sudo apt install automake autoconf make git libtool libexpat1-dev

The other required package noted in the instructions is tls from LibreSSL. LibreSSL is a branch of
OpenSSL and is used on OpenBSD - not found on Linux, but seems to be appearing in the latest
Debian/Ubuntu beta builds. So we need to download the bits we need and install. The rpki-client
instructions don't say anything about how to do that.

First we go to https://ftp.openbsd.org/pub/OpenBSD/LibreSSL/ and select the latest package, which is
libressl-3.8.2.tar.gz at time of writing

https://ftp.openbsd.org/pub/OpenBSD/LibreSSL/

Last update: 2023/12/27 14:34 hints:rpki https://bgp4all.com/pfs/hints/rpki?rev=1703687652

https://bgp4all.com/pfs/ Printed on 2026/01/19 12:33

wget https://ftp.openbsd.org/pub/OpenBSD/LibreSSL/libressl-3.8.2.tar.gz

We then unpack it:

tar zxf libressl-3.8.2.tar.gz

and then build it:

cd libressl-3.8.2
./configure --enable-libtls-only
make
sudo make install

Note the option to only build libtls - we don't need the rest of LibreSSL and it could well interfere with
OpenSSL which will already be on the system. Now that libtls is built, the install action will put the
libraries in /usr/local/lib like this:

-rw-r--r-- 1 root root 19555936 Nov 9 14:35 libtls.a
-rw-r--r-- 1 root root 923 Nov 9 14:35 libtls.la
lrwxrwxrwx 1 root root 16 Nov 9 14:35 libtls.so -> libtls.so.28.0.0
lrwxrwxrwx 1 root root 16 Nov 9 14:35 libtls.so.28 ->
libtls.so.28.0.0
-rw-r--r-- 1 root root 9104272 Nov 9 14:35 libtls.so.28.0.0

Run sudo ldconfig so that the system knows about the new libraries.

Next we need to get some packages that rpki-client needs. These are libssl-dev, rsync and zlib1g-
dev.

sudo apt install libssl-dev rsync zlib1g-dev

And now we are ready to build rpki-client.

Building rpki-client

Easiest is just to install rpki-client from the Github repository:

git clone https://github.com/rpki-client/rpki-client-portable.git

and then:

cd rpki-client-portable
./autogen.sh
./configure --with-tal-dir=/etc/rpki \
 --with-base-dir=/var/lib/rpki-client \
 --with-output-dir=/var/db/rpki-client
make

The autogen.sh script fixes the config set up, ready to run configure which will produce the

https://github.com/rpki-client/rpki-client-portable

2026/01/19 12:33 7/22 RPKI Hints, Top Tips, and FAQs

Philip Smith's Internet Development Site - https://bgp4all.com/pfs/

Makefile. Note that we are specifying where our TALs go, where the temporary files go (following
Ubuntu norms), and where the output file storing the VRPs goes (again following Ubuntu norms).

Hidden in the official instructions is a comment that rpki-client runs as a normal user if started as
root. So we need to create that normal user:

sudo groupadd _rpki-client
sudo useradd –g _rpki-client –s /sbin/nologin –d /nonexistent –c "rpki-
client user" _rpki-client

Now we can install RPKI-client:

sudo make install

which will install the client in /usr/local/sbin and the 4 TALs in /etc/rpki, as well as create the cache
and output directories needed. Note that the ARIN TAL requires users to read the disclaimer first so is
not provided by default. So you need to do this manually:

wget https://www.arin.net/resources/manage/rpki/arin.tal
sudo mv arin.tal /etc/rpki

Now the client can be run. There is no daemon option, it simply runs at the command line, and when
it has finished downloading all the VRPs (around 10-15 minutes depending on bandwidth) it exits. But
that's okay. Try running the client:

sudo /usr/local/sbin/rpki-client

You'll see errors about various CAs or files not being accessible - that's their problem, not yours. If you
check in the /var/db/rpki-client folder you will see an openbgpd file once the above run of rpki-
client completes. This is the configuration you'd need if you run openbgp. However, we are going to
run a standalone RtR client instead, so we will need JSON output instead.

Once rpki-client completes, we can now set it up to run automatically. To do this, we create a file in
/etc/cron.hourly called rpki-client, and in it we put:

#!/bin/bash

run RPKI-client every hour
- default output location is /var/db/rpki-client
- -j option means json output, suitable for stayrtr

/usr/local/sbin/rpki-client -j > /tmp/rpki-client.log 2>&1

and that's it. Every hour, cron will run rpki-client which will produce JSON output of all the VRPs it
has collected. As noted above, JSON output is what is used by StayRTR and GoRTR as their input
sources. Make sure that the /etc/cron.hourly/rpki-client is executable, otherwise it will not run.

It's a good idea to check the log file in case rpki-client reports issues trying to write local files etc.
But mostly what you'll see there are all the transactions with the various CAs, and the problems
encountered (there will be lots, unfortunately).

Last update: 2023/12/27 14:34 hints:rpki https://bgp4all.com/pfs/hints/rpki?rev=1703687652

https://bgp4all.com/pfs/ Printed on 2026/01/19 12:33

StayRTR

StayRTR is a hard fork of GoRTR (which is no longer maintained by Cloudflare). For this reason, I
strongly recommend you use StayRTR rather than GoRTR. If you have an existing GoRTR install,
simply replace it with StayRTR.

StayRTR has now been packaged and is available as part of the Ubuntu 22.04 distribution. However,
the packaged version is old (version 0.3.0). At the time of writing, the current release of StayRTR is
version 0.5.1(31). I'm not going to upgrade a production system to interim Ubuntu releases just to get
a slightly newer (and still out of date) version of StayRTR.

So for this reason, and to stay up to date, at least on Ubuntu, we have to build it ourselves. A pity that
the StayRTR maintainers don't build their own deb package, or pre-build packages like NLnetLabs do
with Routinator.

Installing Go

First you will need a working Go environment. Full instructions are at https://go.dev/doc/install, and
I've reproduced the key pieces here to make it easy for installers.

First off, download the latest Go package (1.21.4 at time of writing):

wget https://go.dev/dl/go1.21.4.linux-amd64.tar.gz

If you have an existing Go environment, perhaps save it in case something goes wrong with the new
version:

sudo mv /usr/local/go /usr/local/go.old

and then you can unpack the new version:

cd /usr/local
sudo chmod 777 .
tar xzf ~/go1.21.4.linux-amd64.tar.gz
sudo chmod 755 .

Next add /usr/local/go/bin to the PATH environment variable. If you use bash, this would be in the
.profile in your home directory, and just add:

if [-d "/usr/local/go/bin"] ; then
 PATH="$PATH:/usr/local/go/bin"
fi

Log off. And then log in again. (Easiest way of activating the updated PATH.)

And now check you have a working Go environment:

go version

https://go.dev/doc/install

2026/01/19 12:33 9/22 RPKI Hints, Top Tips, and FAQs

Philip Smith's Internet Development Site - https://bgp4all.com/pfs/

If the version shows what you installed, you are set!

Building StayRTR

Easiest way to install StayRTR is build from the Github repo.

git clone https://github.com/bgp/stayrtr.git
cd stayrtr
make build-all

which builds stayrtr as well as rtrmon and rtrdump (the latter used for testing purposes).

Copy the resulting binaries to /usr/local/bin:

cd dist
sudo cp -p stayrtr-v0.5.1-31-g03532ba-linux-x86_64 /usr/local/bin/stayrtr
sudo cp -p rtrdump-v0.5.1-31-g03532ba-linux-x86_64 /usr/local/bin/rtrdump
sudo cp -p rtrmon-v0.5.1-31-g03532ba-linux-x86_64 /usr/local/bin/rtrmon

StayRTR has lots of options, but the ones we need are these:

 -bind string
 Bind address (default ":8282")
 -cache string
 URL of the cached JSON data (default
"https://console.rpki-client.org/vrps.json")

We don't need to use the public RPKI-client JSON source, given we have our own from the newly
created RPKI-client.

We run StayRTR like this:

/usr/local/bin/stayrtr -bind :3323 -cache /var/db/rpki-client/json

which will at least let us test that it works. Run it and see what happens - you should see output at the
command line looking like this:

INFO[0000] new cache file: Updating sha256 hash ->
e0a14ea955e183e2719dcfbee0e9429b34581972c6ad5f6e9e064ee1396caf60
INFO[0001] New update (307007 uniques, 307007 total prefixes).
INFO[0002] Updated added, new serial 0
INFO[0002] StayRTR Server started (sessionID:60037, refresh:3600, retry:600,
expire:7200)

And if you check the ports that are listening (ss -an) you will see:

tcp LISTEN 0 128 *:9847 *:*
tcp LISTEN 0 128 *:3323 *:*

https://github.com/bgp/stayrtr

Last update: 2023/12/27 14:34 hints:rpki https://bgp4all.com/pfs/hints/rpki?rev=1703687652

https://bgp4all.com/pfs/ Printed on 2026/01/19 12:33

Port 3323 is the listening port for Router connections. And Port 9847 is the metrics port, for
monitoring systems to connect to.

But perhaps this isn't good for long term operations as you'd prefer to have this start running
automatically when the system starts. And for that we'd need to set up a suitable systemd entry.

First off, let's create a user for StayRTR (it does not have to run as root):

sudo groupadd _stayrtr
sudo useradd –g _stayrtr –s /sbin/nologin –d /nonexistent –c "StayRTR user"
_stayrtr

Next we create a file /etc/default/stayrtr with the following contents:

Settings for StayRTR. Consult https://github.com/bgp/stayrtr for
more discussion and other available options

STAYRTR_ARGS=-bind :3323 -cache /var/db/rpki-client/json
#

Then we go to the /lib/systemd/system/ folder and create the systemd entry - call it
stayrtr.service. Here is a simple one that should work:

[Unit]
Description=StayRTR RPKI to Router Server
Documentation=https://github.com/bgp/stayrtr
After=network.target

[Service]
EnvironmentFile=/etc/default/stayrtr
ExecStart=/usr/local/bin/stayrtr $STAYRTR_ARGS
Type=exec
User=_stayrtr
Group=_stayrtr
AmbientCapabilities=CAP_NET_BIND_SERVICE
CapabilityBoundingSet=CAP_NET_BIND_SERVICE

[Install]
WantedBy=multi-user.target

We then need to enable it:

sudo systemctl enable stayrtr

which then displays:

Created symlink /etc/systemd/system/multi-user.target.wants/stayrtr.service
→ /lib/systemd/system/stayrtr.service.

and then we can run StayRTR, like this:

2026/01/19 12:33 11/22 RPKI Hints, Top Tips, and FAQs

Philip Smith's Internet Development Site - https://bgp4all.com/pfs/

sudo systemctl start stayrtr

Once it is running, check that it is working by running:

sudo systemctl status stayrtr

and you should see something like this:

* stayrtr.service - StayRTR RPKI to Router Server
 Loaded: loaded (/lib/systemd/system/stayrtr.service; enabled; vendor
preset: ena
 Active: active (running) since Fri 2022-01-28 15:50:27 AEST; 25s ago
 Docs: https://github.com/bgp/stayrtr Main PID: 17390 (stayrtr)
 Tasks: 11 (limit: 4915) Memory: 241.8M
 CGroup: /system.slice/stayrtr.service
 └─17390 /usr/local/bin/stayrtr -bind :3323 -cache /var/db/rpki-
client/js
Jan 28 15:50:27 stayrtr systemd[1]: Starting StayRTR RPKI to Router
Server...
Jan 28 15:50:27 stayrtr systemd[1]: Started StayRTR RPKI to Router Server.
Jan 28 15:50:27 stayrtr stayrtr[17390]: time="2022-01-28T15:50:27+10:00"
level=info m
Jan 28 15:50:28 stayrtr stayrtr[17390]: time="2022-01-28T15:50:28+10:00"
level=info m
Jan 28 15:50:29 stayrtr stayrtr[17390]: time="2022-01-28T15:50:29+10:00"
level=info m
Jan 28 15:50:29 stayrtr stayrtr[17390]: time="2022-01-28T15:50:29+10:00"
level=info m

and you can also run the more traditional ps ax to see something like:

17390 ? Ssl 0:04 /usr/local/bin/stayrtr -bind :3323 -cache
/var/db/rpki-client/json

And that's it. Enjoy your new StayRTR installation.

GoRTR

I've included GoRTR here though it is no longer maintained by Cloudflare as the maintainer has
moved on to pastures new. All development work is now being carried out on StayRTR which is a hard
fork of GoRTR. The last version of GoRTR was released in April 2023, and is version 0.14.8.

I'll be very clear - please don't use GoRTR. I still run it for interest sake. For production, StayRTR is
very actively maintained, and that's what should be used in conjunction with rpki-client.

As with StayRTR, you need a working Go environment. Please consult the Installing Go section for how
to do that.

https://bgp4all.com/pfs/hints/rpki#installing_go

Last update: 2023/12/27 14:34 hints:rpki https://bgp4all.com/pfs/hints/rpki?rev=1703687652

https://bgp4all.com/pfs/ Printed on 2026/01/19 12:33

Installing GoRTR

Easiest way to do this is to build from the Github repo.

Note1: You could download and use the provided binaries if you wish.

Note2: You could even download the Debian package if you wish, and install that. It needs the
adduser package, and a libc from 2.4 onwards (most modern Ubuntu releases). Bonus with the .deb
package is that it comes with a systemd configuration.

But we will focus on building from the source.

git clone https://github.com/cloudflare/gortr.git
cd gortr
make build-gortr build-rtrmon build-rtrdump

which builds gortr as well as rtrmon and rtrdump (the latter used for testing purposes).

Copy the resulting binaries to /usr/local/bin:

cd dist
sudo cp -p gortr-v0.14.8-5-g9f01dca-linux-x86_64 /usr/local/bin/gortr
sudo cp -p rtrdump-v0.14.8-5-g9f01dca-linux-x86_64 /usr/local/bin/rtrdump
sudo cp -p rtrmon-v0.14.8-5-g9f01dca-linux-x86_64 /usr/local/bin/rtrmon

GoRTR has lots of options, but the ones we need are these:

 -bind string
 Bind address (default ":8282")
 -cache string
 URL of the cached JSON data (default
"https://rpki.cloudflare.com/rpki.json")
 -checktime
 Check if file is still valid (default true)
 -verify
 Check signature using provided public key (disable by passing -
verify=false)

We don't need to use the Cloudflare JSON source, given we have our own from the newly created
RPKI-client. RPKI-client doesn't insert a timestamp in the way that GoRTR wants, nor is there a
signature on it, so we need to disable that too.

We run GoRTR like this:

/usr/local/bin/gortr -bind :3323 -verify=false -cache /var/db/rpki-
client/json -checktime=false

which will at least let us test that it works. Run it and see what happens - you should see output at the
command line looking like this:

https://github.com/cloudflare/gortr
https://github.com/cloudflare/gortr/releases
https://github.com/cloudflare/gortr/releases/download/v0.14.8/gortr_0.14.8_amd64.deb

2026/01/19 12:33 13/22 RPKI Hints, Top Tips, and FAQs

Philip Smith's Internet Development Site - https://bgp4all.com/pfs/

INFO[0001] New update (304138 uniques, 304138 total prefixes). 0 bytes.
Updating sha256 hash ->
0592ddc6e9a82666f8ddc5eda8cad76cb61f22640f17199b1bff06b5928b9718
INFO[0002] Updated added, new serial 0
INFO[0002] GoRTR Server started (sessionID:33094, refresh:3600, retry:600,
expire:7200)

And if you check the ports that are listening (ss -an) you will see:

tcp LISTEN 0 128 *:3323 *:*
tcp LISTEN 0 128 *:8080 *:*

Port 3323 is the listening port for Router connections. And Port 8080 is the metrics port, for
monitoring systems to connect to.

But perhaps this isn't good for long term operations as you'd prefer to have this start running
automatically when the system starts. And for that we'd need to set up a suitable systemd entry.

First off, let's create a user for GoRTR (it does not have to run as root):

sudo groupadd _gortr
sudo useradd –g _gortr –s /sbin/nologin –d /nonexistent –c "GoRTR user"
_gortr

Next we create a file /etc/default/gortr with the following contents:

Settings for GoRTR. Consult https://github.com/cloudflare/gortr for
more discussion and other available options

GORTR_ARGS=-bind :3323 -verify=false -cache /var/db/rpki-client/json -
checktime=false
#

Then we go to the /lib/systemd/system/ folder and create the systemd entry - call it
gortr.service. Here is a simple one that should work:

[Unit]
Description=GoRTR RPKI to Router Server
Documentation=https://github.com/cloudflare/gortr
After=network.target

[Service]
EnvironmentFile=/etc/default/gortr
ExecStart=/usr/local/bin/gortr $GORTR_ARGS
Type=exec
User=_gortr
Group=_gortr
AmbientCapabilities=CAP_NET_BIND_SERVICE
CapabilityBoundingSet=CAP_NET_BIND_SERVICE

Last update: 2023/12/27 14:34 hints:rpki https://bgp4all.com/pfs/hints/rpki?rev=1703687652

https://bgp4all.com/pfs/ Printed on 2026/01/19 12:33

[Install]
WantedBy=multi-user.target

We then need to enable it:

sudo systemctl enable gortr

which then displays:

Created symlink /etc/systemd/system/multi-user.target.wants/gortr.service →
/lib/systemd/system/gortr.service.

and then we can run GoRTR, like this:

sudo systemctl start gortr

Once it is running, check that it is working by running:

sudo systemctl status gortr

and you should see something like this:

* gortr.service - GoRTR RPKI to Router Server
 Loaded: loaded (/lib/systemd/system/gortr.service; enabled; vendor
preset: enabled)
 Drop-In: /run/systemd/system/service.d
 └─zzz-lxc-service.conf
 Active: active (running) since Wed 2023-07-19 07:00:18 UTC; 5 months 9
days ago
 Docs: https://github.com/cloudflare/gortr
 Main PID: 170962 (gortr)
 Tasks: 14 (limit: 38463)
 Memory: 314.5M
 CGroup: /system.slice/gortr.service
 └─170962 /usr/local/bin/gortr -bind :3323 -verify=false -cache
/var/db/rpki-client/json -checktime=false

Dec 27 13:14:43 gortr gortr[170962]: time="2023-12-27T13:14:43Z" level=info
msg="File /var/db/rpki-client/json is identical to the previous ve>
Dec 27 13:24:46 gortr gortr[170962]: time="2023-12-27T13:24:46Z" level=info
msg="New update (621269 uniques, 621269 total prefixes). 0 bytes. >
Dec 27 13:24:50 gortr gortr[170962]: time="2023-12-27T13:24:50Z" level=info
msg="Updated added, new serial 3871"

and you can also run the more traditional ps ax to see something like:

 170962 ? Ssl 985:57 /usr/local/bin/gortr -bind :3323 -verify=false
-cache /var/db/rpki-client/json -checktime=false

And that's it. Enjoy your new GoRTR installation.

2026/01/19 12:33 15/22 RPKI Hints, Top Tips, and FAQs

Philip Smith's Internet Development Site - https://bgp4all.com/pfs/

Cisco IOS-XE Hints

This section shows the basic configuration needed to get route origin validation up and running on a
Cisco IOS-XE platform. (Cisco IOS-XR is not covered here and will likely be different.)

Most commentary is for IOS-XE 16.x onwards. IOS 15.5S (and IOS-XE equivalent) will also likely work
with the following examples, but their RPKI implementation is somewhat old and buggy.

Configuration with Validator

Setting up a Cisco router to talk with a validator is simple:

router bgp <ASN>
 bgp rpki server tcp <ip address> port <port> refresh 3600

where <ip address> is the IP address (IPv4 or IPv6) of the validator, <port> is the TCP port the
validator listens on, and 3600 is the RFC8210 recommended refresh interval (the period which the
router will use to ask the validator if there is new/updated validation information available).

To find out what is in the validation database (IPv4 and IPv6 commands shown):

show ip bgp rpki table
show bgp ipv6 rpki table

and to find out the status of the connection to the validator:

show ip bgp rpki servers

Caveats

Cisco IOS-XE has many defaults which are non-standard and will be potentially frustrating for
operators:

Automatically activates route origin validation (cannot be turned off!)
Automatically drops invalids (can be turned off!)
Locally originated prefixes are always marked as valid (cannot be turned off!) - fixed in most
recent IOS-XE 17.x releases
Automatically prefers Valid path over Invalid/NotFound, even if latter has higher local-
preference (BGP Best Path Selection over-ride) (cannot be turned off!) - only relevant if
propagating validation information in IBGP (not recommended)
If validator disappears, router validation database is flushed within a few minutes - fixed in most
recent IOS-XE 16.x releases

To turn off the automatic dropping of invalids:

router bgp <ASN>
 bgp bestpath prefix-validate allow-invalid

Last update: 2023/12/27 14:34 hints:rpki https://bgp4all.com/pfs/hints/rpki?rev=1703687652

https://bgp4all.com/pfs/ Printed on 2026/01/19 12:33

To propagate the validation state in IBGP, both BGP speakers need:

neighbor x.x.x.x announce rpki state

Please do NOT do this, as there are operational consequences, especially if validators become
unreachable (specifically that IOS-XE has added an undocumented feature in the path selection
process whereby a prefix marked as valid from one IBGP neighbour is preferred over invalid/notfound
from another IBGP neighbour regardless of local-preference setting).

Summary: Cisco has tried to make it easy to deploy ROV, but unfortunately this “assistance” ignores
standards and best practices. Any implementation must never take control away from the operator
about what they can and cannot do, especially if there is no way of turning off mis-features.

Implementing Route Origin Validation

The final step in Cisco IOS-XE is to implement Route Origin Validation. This is achieved simply by
turning off the knob we noted above that automatically drops invalid prefixes.

router bgp <ASN>
 no bgp bestpath prefix-validate allow-invalid

Juniper Hints

This section shows the basic configuration needed to get route origin validation up and running on a
JunOS platform. JunOS follows standards, as far as I can tell. All policy has to be explicitly configured
by the operator.

Configuration with Validator

The configuration needed for JunOS to talk with two validators looks like this:

routing-options {
 validation {
 group ISP {
 /* validatorA */
 session <ip address validatorA> {
 refresh-time 600;
 hold-time 3600;
 preference 1;
 port <port>;
 local-address <router loopback>;
 }
 /* validatorB */
 session <ip address validatorB> {
 refresh-time 600;
 hold-time 3600;

2026/01/19 12:33 17/22 RPKI Hints, Top Tips, and FAQs

Philip Smith's Internet Development Site - https://bgp4all.com/pfs/

 preference 2;
 port <port>;
 local-address <router loopback>;
 }
 }
 }
}

where <ip address> is the IP address (IPv4 or IPv6) of the validator, <port> is the TCP port the
validator listens on, and 3600 is the RFC8210 recommended refresh interval (the period which the
router will use to ask the validator if there is new/updated validation information available).

Two validators are recommended - if you only have one, then edit the above to suit.

This simply creates a validation database on the router - it does not touch the BGP RIB. To find out
what is in the validation database:

show validation replication database

and to find out the status of the connection to the validator:

show validation session detail

Flagging validation status in BGP RIB

To indicate validation status in the BGP RIB, the operator needs to implement a policy statement to do
that. Here is an example:

policy-options {
 policy-statement RPKI-validation {
 term VALID {
 from {
 protocol bgp;
 validation-database valid;
 }
 then {
 validation-state valid;
 next policy;
 }
 }
 term INVALID {
 from {
 protocol bgp;
 validation-database invalid;
 }
 then {
 validation-state invalid;
 next policy;
 }
 }

Last update: 2023/12/27 14:34 hints:rpki https://bgp4all.com/pfs/hints/rpki?rev=1703687652

https://bgp4all.com/pfs/ Printed on 2026/01/19 12:33

 term UNKNOWN {
 from {
 protocol bgp;
 validation-database unknown;
 }
 then {
 validation-state unknown;
 next policy;
 }
 }
 }
}
protocols {
 bgp {
 group EBGP {
 type external;
 local-address <local-router>;
 neighbor <ebgp-peer> {
 description "Upstream";
 import [RPKI-validation Upstream-in];
 export LocalAS-out;
 peer-as <their-ASN>;
 }
 }
 }
}

This is intended to be used as an inbound policy on an EBGP peer. The validation-database
configuration refers to the database created by the router's session with the validator. The validation-
state configuration enters a flag in the BGP RIB to indicate the validation state of the prefix. Note that
the Upstream-in policy is other inbound policy that is on the router, and not documented here.

And then the operator can do things like:

show route protocol bgp validation-state valid

to show the valid prefixes as in this example. Other options are available for invalid and notfound.

Implementing Route Origin Validation

The final step in JunOS is to implement Route Origin Validation. This is can be simply achieved by
replacing the:

next policy

line in the INVALID term with:

reject

2026/01/19 12:33 19/22 RPKI Hints, Top Tips, and FAQs

Philip Smith's Internet Development Site - https://bgp4all.com/pfs/

This will discard invalid prefixes as they arrive on an EBGP speaking router. If you want to find out
what has been dropped, you can run:

show route protocol bgp validation invalid hidden

The discarded prefixes are still in Adj-RIB-In and can be seen with the hidden keyword option.

BIRD Hints

This section shows the basic configuration needed to get route origin validation up and running on a
BIRD platform. This will be of most interest to IXPs, as BIRD is the mostly widely used Route Server
implementation today. The configuration here is for BIRDv2 (2.13.1 at time of writing).

Configuration with Validator

The configuration needed for BIRD to talk with a validator is:

roa4 table r4;
roa6 table r6;

protocol rpki validator1 {
 roa4 { table rpki4; };
 roa6 { table rpki6; };
 remote <ip address1> port <port1>;
 retry keep 600;
 refresh keep 3600;
 expire keep 7200;
}

protocol rpki validator2 {
 roa4 { table rpki4; };
 roa6 { table rpki6; };
 remote <ip address2> port <port2>;
 retry keep 600;
 refresh keep 3600;
 expire keep 7200;
}

where <ip address> is the IP address (IPv4 or IPv6) of the validator, <port> is the TCP port the
validator listens on, and 3600 is the RFC8210 recommended refresh interval (the period which the
router will use to ask the validator if there is new/updated validation information available). Two
validators are shown in this example.

This simply creates a validation database in BIRD - it does not touch the BGP RIB. To find out what is
in the validation database (IPv4 and IPv6 shown):

show route table rpki4

https://bird.network.cz/

Last update: 2023/12/27 14:34 hints:rpki https://bgp4all.com/pfs/hints/rpki?rev=1703687652

https://bgp4all.com/pfs/ Printed on 2026/01/19 12:33

show route table rpki6

and to find out the status of the connection to validator1:

show protocols validator1

Implementing Route Origin Validation

The final step in BIRD is to implement Route Origin Validation. This needs a policy statement, to be
applied as outbound policy on all BGP sessions (internal and external). We build those up using BIRD
functions, like below (as used on route-server implementations of BIRD).

v4 function to check if prefix valid
function is_v4_rpki_invalid () {
 return roa_check(rpki4, net, bgp_path.last_nonaggregated) = ROA_INVALID;
}

v6 function to check if prefix valid
function is_v6_rpki_invalid () {
 return roa_check(rpki6, net, bgp_path.last_nonaggregated) = ROA_INVALID;
}

return true if invalid, false if not
function prefix_is_invalid()
{
 if net.type = NET_IP4 then
 if is_v4_rpki_invalid() then return true;
 if net.type = NET_IP6 then
 if is_v6_rpki_invalid() then return true;
 return false;
}

And then the prefix_is_valid function will be called as part of a larger outbound policy function, for
example:

filter EXPORT
{
 if (prefix_is_bogon()) then reject "[Rejected Prefix: Bogon] ", net;
 if (prefix_is_invalid()) then reject "[Rejected Prefix: Invalid] ", net;
 if (as_path_contains_bogons()) then reject "[Rejected Prefix: Bogon AS] ",
net;
 if (bgp_path.len > 32) then reject "[Rejected Prefix: Long AS] ", net;
 if (bgp_path.len < 1) then reject "[Rejected Prefix: No AS] ", net;
 accept "[Exported Prefix] ", net;
}

2026/01/19 12:33 21/22 RPKI Hints, Top Tips, and FAQs

Philip Smith's Internet Development Site - https://bgp4all.com/pfs/

FRrouting Hints

This section shows the basic configuration needed to get route origin validation up and running on
implementations using FRrouting (FRR). The commentary below assumes FRR 8.2.2. Older versions of
FRR (8.1 and 7.5) have slightly different CLI and may not have all the features shown here.

Configuration with Validator

The configuration needed for FRR to talk with a validator is:

rpki
 rpki polling_period 3600
 rpki cache <ip address1> <port1> preference 1
 rpki cache <ip address2> <port2> preference 2
exit

Two validators are configured in this example, the preferred one has preference 1. The backup
validator (used when the primary has become unreachable) is preference 2. More can be added
following this principle.

FRR automatically populates the BGP RIB with validation status of each prefix. No operator
intervention is needed. To find out what is in the validation database:

show rpki prefix-table

and to find out the status of the connection to the active validator:

show rpki cache-connection

To show the BGP RIB with the validation information now flagged, just use the standard:

show bgp

command set. To show prefixes that meet any of the validation states:

show bgp rpki valid

will show all the entries that are valid. There is also a command option for invalid and notfound.

Implementing Route Origin Validation

The final step in FRR is to implement Route Origin Validation. This needs a policy statement, to be
applied as outbound policy on all BGP sessions (internal and external). The following example shows a
route-map exporting IPv4 routes. Similar can be done for IPv6.

route-map EXPORT deny 5
 description Don't send RPKI Invalids

Last update: 2023/12/27 14:34 hints:rpki https://bgp4all.com/pfs/hints/rpki?rev=1703687652

https://bgp4all.com/pfs/ Printed on 2026/01/19 12:33

 match rpki invalid
exit
!
route-map EXPORT deny 15
 description Drop the IPv4 bogons
 match ip address prefix-list v4bogon
exit
!
route-map EXPORT permit 20
 description Everything else is good
exit
!

Back to Home page

From:
https://bgp4all.com/pfs/ - Philip Smith's Internet Development Site

Permanent link:
https://bgp4all.com/pfs/hints/rpki?rev=1703687652

Last update: 2023/12/27 14:34

https://bgp4all.com/pfs/hints/start
https://bgp4all.com/pfs/
https://bgp4all.com/pfs/hints/rpki?rev=1703687652

	RPKI Hints, Top Tips, and FAQs
	AS0 TALs
	NLnetLabs Routinator
	FORT
	RPKI-client
	Initial Preparation
	Building rpki-client

	StayRTR
	Installing Go
	Building StayRTR

	GoRTR
	Installing GoRTR

	Cisco IOS-XE Hints
	Configuration with Validator
	Caveats
	Implementing Route Origin Validation

	Juniper Hints
	Configuration with Validator
	Flagging validation status in BGP RIB
	Implementing Route Origin Validation

	BIRD Hints
	Configuration with Validator
	Implementing Route Origin Validation

	FRrouting Hints
	Configuration with Validator
	Implementing Route Origin Validation

